Neurological Sciences

, Volume 33, Issue 5, pp 1037–1042 | Cite as

Education and occupation provide reserve in both ApoE ε4 carrier and noncarrier patients with probable Alzheimer’s disease

  • V. Garibotto
  • B. Borroni
  • S. Sorbi
  • S. F. Cappa
  • A. Padovani
  • D. Perani
Original Article

Abstract

According to the reserve hypothesis, a high educational/occupational attainment can modulate Alzheimer’s disease (AD) clinical expression. The impact of the Apolipoprotein E (ApoE) ε4 allele on the reserve mechanism in AD has not been assessed. Aim of this European multicenter study was to evaluate the metabolic correlates of reserve and ApoE genotype in early probable AD. 51 AD subjects, 27 ε4 carriers, and 24 noncarriers, underwent FDG-PET brain imaging. We used the general linear model as implemented in SPM2 to test for the linear correlation of a reserve index, accounting for both educational and occupational level, with brain glucose metabolism, controlling for demographic variables (age and gender) and for cognitive performance. We found an inverse correlation between a reserve index, accounting for educational/occupational level, and metabolism in the posterior cingulate cortex and precuneus in both ε4 carriers and noncarriers, and no significant difference between the groups. We show that education and occupation act as proxies for reserve in ε4 carriers, compensating for an unfavorable genetic background; we also show that the degree of compensation does not differ significantly by ApoE ε4 status.

Keywords

Alzheimer’s disease ApoE PET Glucose metabolism Education 

Notes

Acknowledgments

This study was financially supported by NEST-DD (5th European Research Program) and DIMI (6th European Research Program: LSHB-CT-2005-512146). We thank Kalbe E, PhD; Herholz K, MD; Holthoff V, MD; Pupi A, MD for contributing the patients within this NEST-DD European multicenter study. This study was financially supported by NEST-DD (5th European Research Program) and DIMI (6th European Research Program: LSHB-CT-2005-512146).

Conflict of interest

The authors report no financial disclosures. The authors declare that they have no conflict of interest.

References

  1. 1.
    Stern Y (2009) Cognitive reserve. Neuropsychologia 47(10):2015–2028. doi: 10.1016/j.neuropsychologia.2009.03.004 PubMedCrossRefGoogle Scholar
  2. 2.
    Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8(3):448–460PubMedCrossRefGoogle Scholar
  3. 3.
    Bennett DA, Wilson RS, Schneider JA, Evans DA, Mendes de Leon CF, Arnold SE, Barnes LL, Bienias JL (2003) Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology 60(12):1909–1915PubMedCrossRefGoogle Scholar
  4. 4.
    Christensen H, Anstey KJ, Parslow RA, Maller J, Mackinnon A, Sachdev P (2007) The brain reserve hypothesis, brain atrophy and aging. Gerontology 53(2):82–95. doi: 10.1159/000096482 PubMedCrossRefGoogle Scholar
  5. 5.
    Vemuri P, Weigand SD, Przybelski SA, Knopman DS, Smith GE, Trojanowski JQ, Shaw LM, Decarli CS, Carmichael O, Bernstein MA, Aisen PS, Weiner M, Petersen RC, Jack CR Jr (2011) Cognitive reserve and Alzheimer’s disease biomarkers are independent determinants of cognition. Brain 134(Pt 5):1479–1492. doi: 10.1093/brain/awr049 PubMedCrossRefGoogle Scholar
  6. 6.
    Perneczky R, Wagenpfeil S, Lunetta KL, Cupples LA, Green RC, Decarli C, Farrer LA, Kurz A (2010) Head circumference, atrophy, and cognition: implications for brain reserve in Alzheimer disease. Neurology 75(2):137–142. doi: 10.1212/WNL.0b013e3181e7ca97 PubMedCrossRefGoogle Scholar
  7. 7.
    Perneczky R, Drzezga A, Diehl-Schmid J, Schmid G, Wohlschlager A, Kars S, Grimmer T, Wagenpfeil S, Monsch A, Kurz A (2006) Schooling mediates brain reserve in Alzheimer’s disease: findings of fluoro-deoxy-glucose-positron emission tomography. J Neurol Neurosurg Psychiatry 77(9):1060–1063. doi: 10.1136/jnnp.2006.094714 PubMedCrossRefGoogle Scholar
  8. 8.
    Roe CM, Mintun MA, Ghoshal N, Williams MM, Grant EA, Marcus DS, Morris JC (2010) Alzheimer disease identification using amyloid imaging and reserve variables: proof of concept. Neurology 75(1):42–48. doi: 10.1212/WNL.0b013e3181e620f4 PubMedCrossRefGoogle Scholar
  9. 9.
    Fotenos AF, Mintun MA, Snyder AZ, Morris JC, Buckner RL (2008) Brain volume decline in aging: evidence for a relation between socioeconomic status, preclinical Alzheimer disease, and reserve. Arch Neurol 65(1):113–120. doi: 10.1001/archneurol.2007.27 PubMedCrossRefGoogle Scholar
  10. 10.
    Garibotto V, Borroni B, Kalbe E, Herholz K, Salmon E, Holtoff V, Sorbi S, Cappa SF, Padovani A, Fazio F, Perani D (2008) Education and occupation as proxies for reserve in aMCI converters and AD: FDG-PET evidence. Neurology 71(17):1342–1349. doi: 10.1212/01.wnl.0000327670.62378.c0 PubMedCrossRefGoogle Scholar
  11. 11.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923PubMedCrossRefGoogle Scholar
  12. 12.
    Mosconi L, Perani D, Sorbi S, Herholz K, Nacmias B, Holthoff V, Salmon E, Baron JC, De Cristofaro MT, Padovani A, Borroni B, Franceschi M, Bracco L, Pupi A (2004) MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 63(12):2332–2340 (63/12/2332)PubMedCrossRefGoogle Scholar
  13. 13.
    Cosentino S, Scarmeas N, Helzner E, Glymour MM, Brandt J, Albert M, Blacker D, Stern Y (2008) APOE epsilon 4 allele predicts faster cognitive decline in mild Alzheimer disease. Neurology 70(19 Pt 2):1842–1849. doi: 10.1212/01.wnl.0000304038.37421.cc PubMedGoogle Scholar
  14. 14.
    Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24(3):521–529 (S0896-6273(00)81109-5)PubMedCrossRefGoogle Scholar
  15. 15.
    Kim KR, Lee KS, Kim EA, Cheong H-K, Oh BH, Hong CH (2008) The effect of the ApoE genotype on the association between head circumference and cognition. Am J Geriatr Psychiatry 16(10):819–825PubMedCrossRefGoogle Scholar
  16. 16.
    Mosconi L, Herholz K, Prohovnik I, Nacmias B, De Cristofaro MT, Fayyaz M, Bracco L, Sorbi S, Pupi A (2005) Metabolic interaction between ApoE genotype and onset age in Alzheimer’s disease: implications for brain reserve. J Neurol Neurosurg Psychiatry 76(1):15–23PubMedCrossRefGoogle Scholar
  17. 17.
    Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, Schonknecht P, Ito K, Mielke R, Kalbe E, Zundorf G, Delbeuck X, Pelati O, Anchisi D, Fazio F, Kerrouche N, Desgranges B, Eustache F, Beuthien-Baumann B, Menzel C, Schroder J, Kato T, Arahata Y, Henze M, Heiss WD (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17(1):302–316PubMedCrossRefGoogle Scholar
  18. 18.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198 (0022-3956(75)90026-6)PubMedCrossRefGoogle Scholar
  19. 19.
    Spreen O, Strauss E (1998) Compendium of neuropsychological tests: administration, norms, and commentary. Oxford University Press, New YorkGoogle Scholar
  20. 20.
    Delis DC, Freeland J, Kramer JH, Kaplan E (1988) Integrating clinical assessment with cognitive neuroscience: construct validation of the California Verbal Learning Test. J Consult Clin Psychol 56(1):123–130PubMedCrossRefGoogle Scholar
  21. 21.
    Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9(3):179–186PubMedCrossRefGoogle Scholar
  22. 22.
    Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62PubMedCrossRefGoogle Scholar
  23. 23.
    Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 44(12):2308–2314PubMedCrossRefGoogle Scholar
  24. 24.
    Sorbi S, Nacmias B, Forleo P, Piacentini S, Amaducci L (1996) Alzheimer’s disease and apolipoprotein E in Italy. Ann N Y Acad Sci 777:260–265PubMedCrossRefGoogle Scholar
  25. 25.
    Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10(3):241–252. doi: 10.1016/S1474-4422(10)70325-2 PubMedCrossRefGoogle Scholar
  26. 26.
    Perneczky R, Drzezga A, Diehl-Schmid J, Li Y, Kurz A (2007) Gender differences in brain reserve: an (18)F-FDG PET study in Alzheimer’s disease. J Neurol 254(10):1395–1400PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • V. Garibotto
    • 1
    • 2
  • B. Borroni
    • 3
  • S. Sorbi
    • 4
  • S. F. Cappa
    • 5
    • 6
  • A. Padovani
    • 3
  • D. Perani
    • 1
    • 6
  1. 1.Nuclear Medicine Unit and Division of NeuroscienceSan Raffaele Scientific InstituteMilanItaly
  2. 2.Department of Medical Imaging, Nuclear Medicine and Molecular Imaging UnitGeneva University and Geneva University HospitalGenevaSwitzerland
  3. 3.Department of NeurologyUniversity of BresciaBresciaItaly
  4. 4.Department of Neurological and Psychiatric SciencesUniversity of FlorenceFlorenceItaly
  5. 5.Department of Clinical NeuroscienceSan Raffaele Scientific InstituteMilanItaly
  6. 6.Vita-Salute San Raffaele UniversityMilanItaly

Personalised recommendations