Neurological Sciences

, Volume 33, Issue 4, pp 887–892

Sensory evoked potentials to predict short-term progression of disability in multiple sclerosis

  • N. Margaritella
  • L. Mendozzi
  • M. Garegnani
  • E. Colicino
  • E. Gilardi
  • L. DeLeonardis
  • F. Tronci
  • L. Pugnetti
Original Article


To devise a multivariate parametric model for short-term prediction of disability using the Expanded Disability Status Scale (EDSS) and multimodal sensory EP (mEP). A total of 221 multiple sclerosis (MS) patients who underwent repeated mEP and EDSS assessments at variable time intervals over a 20-year period were retrospectively analyzed. Published criteria were used to compute a cumulative score (mEPS) of abnormalities for each of 908 individual tests. Data of a statistically balanced sample of 58 patients were fed to a parametrical regression analysis using time-lagged EDSS and mEPS along with other clinical variables to estimate future EDSS scores at 1 year. Whole sample cross-sectional mEPS were moderately correlated with EDSS, whereas longitudinal mEPS were not. Using the regression model, lagged mEPS and lagged EDSS along with clinical variables provided better future EDSS estimates. The R2 measure of fit was significant and 72% of EDSS estimates showed an error value of ±0.5. A parametrical regression model combining EDSS and mEPS accurately predicts short-term disability in MS patients and could be used to optimize decisions concerning treatment.


Evoked potentials Multiple sclerosis Predictors of disability Multivariate analysis 


  1. 1.
    Jung P, Beyerle A, Ziemann U (2008) Multimodal evoked potentials measure and predict disability progression in early relapsing-remitting multiple sclerosis. Mult Scler 14:553–556PubMedCrossRefGoogle Scholar
  2. 2.
    Kallmann BA, Fackelmann S, Toyka KV, Rieckmann P, Reiners K (2006) Early abnormalities of evoked potentials and future disability in patients with multiple sclerosis. Mult Scler 12:58–65PubMedCrossRefGoogle Scholar
  3. 3.
    Bergamaschi R (2007) Prognostic factors in multiple sclerosis. Int Rev Neurobiol 79:423–447PubMedCrossRefGoogle Scholar
  4. 4.
    Leocani L, Rovaris M, Boneschi FM et al (2006) Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 77(9):1030–1035PubMedCrossRefGoogle Scholar
  5. 5.
    Hume AL, Waxman SG (1988) Evoked potentials in suspected multiple sclerosis: diagnostic value and prediction of clinical course. J Neurol Sci 83:191–210PubMedCrossRefGoogle Scholar
  6. 6.
    Polman CH, Reingold SC, Edan G et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846PubMedCrossRefGoogle Scholar
  7. 7.
    Mcdonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127PubMedCrossRefGoogle Scholar
  8. 8.
    Poser C, Paty D, Scheinberg L et al (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13(3):227–231PubMedCrossRefGoogle Scholar
  9. 9.
    Chiappa KH (1990) Evoked potentials in clinical medicine, 2nd edn. Raven Press, New YorkGoogle Scholar
  10. 10.
    Chen X, Ender P, Mitchell M, Wells C (2003) Regression with Stata, from
  11. 11.
    Rabe-Hesketh S, Skrondal A (2005) Multilevel and longitudinal modeling using Stata. Stata Press, College StationGoogle Scholar
  12. 12.
    Freedman DA (2006) On the so-called ‘Huber Sandwich Estimator’ and ‘robust’ standard errors. Amer Stat 60:299–302CrossRefGoogle Scholar
  13. 13.
    Burnham KP, Anderson D (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33(2):261–304CrossRefGoogle Scholar
  14. 14.
    Fuhr P, Borggrefe-Chappuis A, Schindler C, Kappos L (2001) Visual and motor evoked potentials in the course of multiple sclerosis. Brain 124:2162–2168PubMedCrossRefGoogle Scholar
  15. 15.
    Madsen JB, Yang ZB (1998) Asymmetric price adjustment in a menu-cost model. J Econ 68(3):295–309Google Scholar
  16. 16.
    Deloire M, Ruet A, Hamel M, Bonnet M, Brochet B (2010) Early cognitive impairment in multiple sclerosis predicts disability outcome several years later. Mult Scler 16(5):581–587PubMedCrossRefGoogle Scholar
  17. 17.
    Yaldizli O, Atefy R, Gass A et al (2010) Corpus callosum index and long term disability in multiple sclerosis. J Neurol 257:1256–1264PubMedCrossRefGoogle Scholar
  18. 18.
    Leocani L, Medaglini S, Comi G (2001) Evoked potentials in monitoring multiple sclerosis. Neurol Sci 21(2):889–891Google Scholar
  19. 19.
    Djuric J, Djuric DV, Zivkovic M et al (2010) Are somatosensory evoked potentials of the tibial nerve the most sensitive test in diagnosis multiple sclerosis? Neurol India 58(4):537–541PubMedCrossRefGoogle Scholar
  20. 20.
    Freedman MS, Patry DG, Grand Maison F et al (2004) Treatment optimization in multiple sclerosis. Can J Neurol Sci 31:157–168PubMedGoogle Scholar
  21. 21.
    Vercellino M, Romagnolo A, Mattioda A et al (2009) Multiple sclerosis relapses: a multivariable analysis of residual disability determinants. Acta Neurol Scand 119:126–130PubMedCrossRefGoogle Scholar
  22. 22.
    Kaufman MD, Lee R, Norton H (2010) Course of relapsing-remitting multiple sclerosis before, during and after natalizumab. Mult Scler. doi:10.1177/1352458510389103
  23. 23.
    Meuth SG, Bittner S, Seiler C, Gobel K, Wiendl H (2010) Natalizumab restores evoked potential abnormalities in patients with relapsing-remitting multiple sclerosis. Mult Scler. doi:10.1177/1352458510386998

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • N. Margaritella
    • 1
  • L. Mendozzi
    • 2
  • M. Garegnani
    • 1
  • E. Colicino
    • 3
  • E. Gilardi
    • 1
  • L. DeLeonardis
    • 1
  • F. Tronci
    • 2
  • L. Pugnetti
    • 1
  1. 1.Laboratory of Clinical NeurophysiologyScientific Institute (IRCCS) S. Maria Nascente, Fondazione don C. GnocchiMilanItaly
  2. 2.Multiple Sclerosis Rehabilitation UnitMilanItaly
  3. 3.Department of Decision SciencesL.Bocconi UniversityMilanItaly

Personalised recommendations