Advertisement

Neurological Sciences

, Volume 32, Issue 5, pp 773–785 | Cite as

Resting-state brain networks: literature review and clinical applications

  • Cristina Rosazza
  • Ludovico Minati
Review Article

Abstract

This review focuses on resting-state functional connectivity, a functional MRI technique which allows the study of spontaneous brain activity generated under resting conditions. This approach is useful to explore the brain’s functional organization and to examine if it is altered in neurological or psychiatric diseases. Resting-state functional connectivity has revealed a number of networks which are consistently found in healthy subjects and represent specific patterns of synchronous activity. In this review, we examine the behavioral, physiological and neurological evidences relevant to this coherent brain activity and, in particular, to each network. The investigation of functional connectivity appears promising from a clinical perspective, considering the amount of evidence regarding the importance of spontaneous activity and that resting-state paradigms are inherently simple to implement. We also discuss some examples of existing clinical applications, such as in Alzheimer’s disease, and emerging possibilities such as in pre-operative mapping and disorders of consciousness.

Keywords

Functional connectivity Resting state Spontaneous brain activity Coherence Cognitive correlates Clinical applications 

Notes

Acknowledgments

We thank Dr. Maria Grazia Bruzzone and Dr. Davide Sattin for useful advice on the clinical applications and general revisions to the manuscript.

Conflict of interest

All authors declare that they do not have any real or perceived conflicts of interest pertaining to the present study.

References

  1. 1.
    Abou-Elseoud A, Starck T, Remes J, Nikkinen J, Tervonen O, Kiviniemi V (2010) The effect of model order selection in group PICA. Hum Brain Mapp 31:1207–1216PubMedGoogle Scholar
  2. 2.
    Albert NB, Robertson EM, Miall RC (2009) The resting human brain and motor learning. Curr Biol 19:1023–1027PubMedCrossRefGoogle Scholar
  3. 3.
    Allen G, Barnard H, McColl R, Hester AL, Fields JA, Weiner MF, Ringe WK, Lipton AM, Brooker M, McDonald E, Rubin CD, Cullum CM (2007) Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol 64:1482–1487PubMedCrossRefGoogle Scholar
  4. 4.
    Andrews K, Murphy L, Munday R, Littlewood C (1996) Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ 313:13–16PubMedGoogle Scholar
  5. 5.
    Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013PubMedCrossRefGoogle Scholar
  6. 6.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMedCrossRefGoogle Scholar
  7. 7.
    Biswal BB, Mennes M, Zuo XN, Gohel S et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci USA 107:4734–4739PubMedCrossRefGoogle Scholar
  8. 8.
    Bluhm RL, Osuch EA, Lanius RA, Boksman K, Neufeld RW, Théberge J, Williamson P (2008) Default mode network connectivity: effects of age, sex, and analytic approach. Neuroreport 19:887–891PubMedCrossRefGoogle Scholar
  9. 9.
    Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, Théberge J, Schaefer B, Williamson P (2007) Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 33:1004–1012PubMedCrossRefGoogle Scholar
  10. 10.
    Boly M, Phillips C, Tshibanda L, Vanhaudenhuyse A, Schabus M, Dang-Vu TT, Moonen G, Hustinx R, Maquet P, Laureys S (2008) Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci 1129:119–129PubMedCrossRefGoogle Scholar
  11. 11.
    Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, Boveroux P, Garweg C, Lambermont B, Phillips C, Luxen A, Moonen G, Bassetti C, Maquet P, Laureys S (2009) Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 30:2393–2400PubMedCrossRefGoogle Scholar
  12. 12.
    Bonavita S, Gallo A, Sacco R, Corte MD, Bisecco A, Docimo R, Lavorgna L, Corbo D, Costanzo AD, Tortora F, Cirillo M, Esposito F, Tedeschi G (2011) Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Mult Scler 17:411–422Google Scholar
  13. 13.
    Boveroux P, Vanhaudenhuyse A, Bruno MA, Noirhomme Q, Lauwick S, Luxen A, Degueldre C, Plenevaux A, Schnakers C, Phillips C, Brichant JF, Bonhomme V, Maquet P, Greicius MD, Laureys S, Boly M (2010) Breakdown of within-and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113:1038–1053Google Scholar
  14. 14.
    Buckner RL et al (2010) Human functional connectivity: new tools, unresolved questions. Proc Natl Acad Sci USA 107:10769–10770PubMedCrossRefGoogle Scholar
  15. 15.
    Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedCrossRefGoogle Scholar
  16. 16.
    Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873PubMedCrossRefGoogle Scholar
  17. 17.
    Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717PubMedCrossRefGoogle Scholar
  18. 18.
    Buckner RL, Vincent JL (2007) Unrest at rest: default activity and spontaneous network correlations. Neuroimage 37:1091–1096PubMedCrossRefGoogle Scholar
  19. 19.
    Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14:140–151PubMedCrossRefGoogle Scholar
  20. 20.
    Calhoun VD, Eichele T, Pearlson G (2009) Functional brain networks in schizophrenia: a review. Front Hum Neurosci 3:17PubMedCrossRefGoogle Scholar
  21. 21.
    Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 29:828–838PubMedCrossRefGoogle Scholar
  22. 22.
    Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583PubMedCrossRefGoogle Scholar
  23. 23.
    Cauda F, Micon BM, Sacco K, Duca S, D’Agata F, Geminiani G, Canavero S (2009) Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 80:429–431PubMedCrossRefGoogle Scholar
  24. 24.
    Coleman MR, Davis MH, Rodd JM, Robson T, Ali A, Owen AM, Pickard JD (2009) Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain 132:2541–2552PubMedCrossRefGoogle Scholar
  25. 25.
    Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMedCrossRefGoogle Scholar
  26. 26.
    Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol 21:1636–1644PubMedGoogle Scholar
  27. 27.
    Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22:1326–1333PubMedGoogle Scholar
  28. 28.
    Corradi-Dell’Acqua C, Tomelleri L, Bellani M, Rambaldelli G, Cerini R, Pozzi-Mucelli R, Balestrieri M, Tansella M, Brambilla P (2011) Thalamic-insular dysconnectivity in schizophrenia: evidence from structural equation modeling. Hum Brain MappGoogle Scholar
  29. 29.
    Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853PubMedCrossRefGoogle Scholar
  30. 30.
    Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213:525–533PubMedCrossRefGoogle Scholar
  31. 31.
    Decety J, Sommerville JA (2003) Shared representations between self and other: a social cognitive neuroscience view. Trends Cogn Sci 7:527–533PubMedCrossRefGoogle Scholar
  32. 32.
    Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104:11073–11078Google Scholar
  33. 33.
    De Luca M, Smith S, De Stefano N, Federico A, Matthews PM (2005) Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res 167:587–594PubMedCrossRefGoogle Scholar
  34. 34.
    De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367PubMedCrossRefGoogle Scholar
  35. 35.
    Dronkers NF, Wilkins DP, Van Valin RD, Redfern BB Jr, Jaeger JJ (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177PubMedCrossRefGoogle Scholar
  36. 36.
    Esposito F, Bertolino A, Scarabino T, Latorre V, Blasi G, Popolizio T, Tedeschi G, Cirillo S, Goebel R, Di Salle F (2006) Independent component model of the default-mode brain function: assessing the impact of active thinking. Brain Res Bull 70:263–269PubMedCrossRefGoogle Scholar
  37. 37.
    Esposito F, Aragri A, Pesaresi I, Cirillo S, Tedeschi G, Marciano E, Goebel R, Di Salle F (2008) Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI. Magn Reson Imaging 26:905–913PubMedCrossRefGoogle Scholar
  38. 38.
    Esposito F, Aragri A, Latorre V, Popolizio T, Scarabino T, Cirillo S, Marciano E, Tedeschi G, Di Salle F (2009) Does the default-mode functional connectivity of the brain correlate with working-memory performances? Arch Ital Biol 147:11–20PubMedGoogle Scholar
  39. 39.
    Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, Matthews PM, Beckmann CF, Mackay CE (2009) Distinct patterns of brain activity in young carriers of the APOE-982epsilon4 allele. Proc Natl Acad Sci USA 106:7209–7214Google Scholar
  40. 40.
    Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051PubMedCrossRefGoogle Scholar
  41. 41.
    Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19PubMedGoogle Scholar
  42. 42.
    Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMedCrossRefGoogle Scholar
  43. 43.
    Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678PubMedCrossRefGoogle Scholar
  44. 44.
    Fransson P, Marrelec G (2008) The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage 42:1178–1184PubMedCrossRefGoogle Scholar
  45. 45.
    French CC, Beaumont JG (1984) A critical review of EEG coherence studies of hemisphere function. Int J Psychophysiol 1:241–254PubMedCrossRefGoogle Scholar
  46. 46.
    Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD (2007) Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 164:450–457PubMedCrossRefGoogle Scholar
  47. 47.
    Giacino JT (2004) The vegetative and minimally conscious states: consensus-based criteria for establishing diagnosis and prognosis. Neuro Rehabil 19:293–298Google Scholar
  48. 48.
    Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258PubMedCrossRefGoogle Scholar
  49. 49.
    Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101:4637–4642PubMedCrossRefGoogle Scholar
  50. 50.
    Greicius MD, Kiviniemi V, Tervonen O, Vainionpää V, Alahuhta S, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29:839–847PubMedCrossRefGoogle Scholar
  51. 51.
    Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19:72–78PubMedCrossRefGoogle Scholar
  52. 52.
    Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159PubMedCrossRefGoogle Scholar
  53. 53.
    Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity related to working memory performance. J Neurosci 26:13338–13343PubMedCrossRefGoogle Scholar
  54. 54.
    Hampson M, Tokoglu F, Sun Z, Schafer RJ, Skudlarski P, Gore JC, Constable RT (2006) Connectivity-behavior analysis reveals that functional connectivity between left BA39 and Broca’s area varies with reading ability. Neuroimage 31:513–519PubMedCrossRefGoogle Scholar
  55. 55.
    Harrison BJ, Yücel M, Pujol J, Pantelis C (2007) Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 91:82–86PubMedCrossRefGoogle Scholar
  56. 56.
    Hasson U, Nusbaum HC, Small SL (2009) Task-dependent organization of brain regions active during rest. Proc Natl Acad Sci USA 106:10841–10846PubMedCrossRefGoogle Scholar
  57. 57.
    Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22:1214–1222PubMedCrossRefGoogle Scholar
  58. 58.
    Hoptman MJ, D’Angelo D, Catalano D, Mauro CJ, Shehzad ZE, Kelly AM, Castellanos FX, Javitt DC, Milham MP (2010) Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophr Bull 36:1020–1028PubMedCrossRefGoogle Scholar
  59. 59.
    Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29:671–682PubMedCrossRefGoogle Scholar
  60. 60.
    Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH (2009) Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci USA 106:11376–11381PubMedCrossRefGoogle Scholar
  61. 61.
    Hutchison RM, Mirsattari SM, Jones CK, Gati JS, Leung LS (2010) Functional networks in the anesthetized rat brain revealed by independent component analysis of resting-state FMRI. J Neurophysiol 1036:3398–3406CrossRefGoogle Scholar
  62. 62.
    Jafri MJ, Pearlson GD, Stevens M, Calhoun VD (2008) A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39:1666–1681PubMedCrossRefGoogle Scholar
  63. 63.
    Kiviniemi V, Kantola JH, Jauhiainen J, Hyvärinen A, Tervonen O (2003) Independent component analysis of nondeterministic fMRI signal sources. Neuroimage 19:253–260PubMedCrossRefGoogle Scholar
  64. 64.
    Koenig T, Studer D, Hubl D, Melie L, Strik WK (2005) Brain connectivity at different time-scales measured with EEG. Philos Trans R Soc Lond B Biol Sci 360:1015–1023PubMedCrossRefGoogle Scholar
  65. 65.
    Koyama MS, Kelly C, Shehzad Z, Penesetti D, Castellanos FX, Milham MP (2010) Reading networks at rest. Cereb Cortex 20:2549–2559PubMedCrossRefGoogle Scholar
  66. 66.
    Kuperberg G, Heckers S (2000) Schizophrenia and cognitive function. Curr Opin Neurobiol 10:205–210PubMedCrossRefGoogle Scholar
  67. 67.
    Laureys S, Owen AM, Schiff ND (2004) Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3:537–546PubMedCrossRefGoogle Scholar
  68. 68.
    Laureys S (2005) The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 9:556–559PubMedCrossRefGoogle Scholar
  69. 69.
    Laureys S, Perrin F, Schnakers C, Boly M, Majerus S (2005) Residual cognitive function in comatose, vegetative and minimally conscious states. Curr Opin Neurol 18:726–733PubMedCrossRefGoogle Scholar
  70. 70.
    Li CSR, Yan P, Bergquist KL, Sinha R (2007) Greater activation of the “default” brain regions predicts stop signal errors. NeuroImage 38:640–648PubMedCrossRefGoogle Scholar
  71. 71.
    Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, Antuono PG (2002) Alzheimer Disease: evaluation of a functional MR imaging index as a marker. Radiology 225:253–259PubMedCrossRefGoogle Scholar
  72. 72.
    Liang M, Zhou Y, Jiang T, Liu Z, Tian L, Liu H, Hao Y (2006) Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17:209–213PubMedCrossRefGoogle Scholar
  73. 73.
    Liu H, Buckner RL, Talukdar T, Tanaka N, Madsen JR, Stufflebeam SM (2009) Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. J Neurosurg 111:746–754PubMedCrossRefGoogle Scholar
  74. 74.
    Locatelli T, Cursi M, Liberati D, Franceschi M, Comi G (1998) EEG coherence in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 106:229–237PubMedCrossRefGoogle Scholar
  75. 75.
    Long XY, Zuo XN, Kiviniemi V, Yang Y, Zou QH, Zhu CZ, Jiang TZ, Yang H, Gong QY, Wang L, Li KC, Xie S, Zang YF (2008) Default mode network as revealed with multiple methods for resting-state functional MRI analysis. J Neurosci Methods 171:349–355PubMedCrossRefGoogle Scholar
  76. 76.
    Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, Mathews VP (2002) Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiol 224:184–192Google Scholar
  77. 77.
    Ma L, Wang B, Chen X, Xiong J (2008) Detecting functional connectivity in the resting brain: a comparison between ICA and CCA. Magn Reson Imaging 25:47–56CrossRefGoogle Scholar
  78. 78.
    Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104:13170–13175PubMedCrossRefGoogle Scholar
  79. 79.
    McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ, Sejnowski TJ (1998) Analysis of FMRI data by blind separation into independent spatial components. Hum Brain Mapp 6:160–188PubMedCrossRefGoogle Scholar
  80. 80.
    Mennes M, Kelly C, Zuo XN, Di Martino A, Biswal BB, Castellanos FX, Milham MP (2010) Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. Neuroimage 50:1690–1701PubMedCrossRefGoogle Scholar
  81. 81.
    Minati L, Edginton T, Bruzzone MG, Giaccone G (2009) Current concepts in Alzheimer’s disease: a multidisciplinary review. Am J Alzheimers Dis Other Demen 24:95–121PubMedCrossRefGoogle Scholar
  82. 82.
    Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Functional brain imaging in Alzheimer s disease. Ann Neurol 42:85–94PubMedCrossRefGoogle Scholar
  83. 83.
    Mohammadi B, Kollewe K, Samii A, Krampfl K, Dengler R, Münte TF (2009) Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol 217:147–153Google Scholar
  84. 84.
    Monti MM, Vanhaudenhuyse A, Coleman MR, Boly M, Pickard JD, Tshibanda L, Owen AM, Laureys S (2010) Willful modulation of brain activity in disorders of consciousness. N Engl J Med 362:579–589PubMedCrossRefGoogle Scholar
  85. 85.
    Noirhomme Q, Soddu A, Lehembre R, Vanhaudenhuyse A, Boveroux P, Boly M, Laureys S (2010) Brain connectivity in pathological and pharmacological coma. Front Syst Neurosci 4:160PubMedCrossRefGoogle Scholar
  86. 86.
    Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2006) Detecting awareness in the vegetative state. Science 313:1402PubMedCrossRefGoogle Scholar
  87. 87.
    Owen AM, Coleman MR (2008) Functional neuroimaging of the vegetative state. Nat Rev Neurosci 9:235–243PubMedCrossRefGoogle Scholar
  88. 88.
    Raichle ME (2010) Two views of brain function. Trends Cogn Sci 14:180–190PubMedCrossRefGoogle Scholar
  89. 89.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682PubMedCrossRefGoogle Scholar
  90. 90.
    Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476PubMedCrossRefGoogle Scholar
  91. 91.
    Raichle ME, Snyder AZ et al (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090PubMedCrossRefGoogle Scholar
  92. 92.
    Rocca MA, Valsasina P, Absinta M, Riccitelli G, Rodegher ME, Misci P, Rossi P, Falini A, Comi G, Filippi M (2010) Default-mode network dysfunction and cognitive impairment in progressive MS. Neurol 74:1252–1259Google Scholar
  93. 93.
    Roy AK, Shehzad Z, Margulies DS, Kelly AM, Uddin LQ, Gotimer K, Biswal BB, Castellanos FX, Milham MP (2009) Functional connectivity of the human amygdala using resting state fMRI. Neuroimage 45:614–626PubMedCrossRefGoogle Scholar
  94. 94.
    Rosazza C, Minati L, Ghielmetti F, Mandelli ML, Bruzzone MG (2011) Functional connectivity during resting-state FMRI: study of the correspondence between independent component analysis (ICA) and region-of-interest (ROI)-based methods. Am J Neuroradiol (in press) Google Scholar
  95. 95.
    Schnakers C, Vanhaudenhuyse A, Giacino J, Ventura M, Boly M, Majerus S, Moonen G, Laureys S (2009) Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol 21:9–35Google Scholar
  96. 96.
    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356PubMedCrossRefGoogle Scholar
  97. 97.
    Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52PubMedCrossRefGoogle Scholar
  98. 98.
    Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM et al (1997) Common blood flow changes across visual tasks. II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663CrossRefGoogle Scholar
  99. 99.
    Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045PubMedCrossRefGoogle Scholar
  100. 100.
    Sorg C, Riedl V, Mühlau M, Calhoun VD, Eichele T, Läer L, Drzezga A, Förstl H, Kurz A, Zimmer C, Wohlschläger AM (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 104:18760–18765PubMedCrossRefGoogle Scholar
  101. 101.
    Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol. 4:e1000100Google Scholar
  102. 102.
    Stevens WD, Buckner RL, Schacter DL (2010) Correlated low-frequency BOLD fluctuations in the resting human brain are modulated by recent experience in category-preferential visual regions. Cereb Cortex 20:1997–2006PubMedCrossRefGoogle Scholar
  103. 103.
    Tedeschi G, Trojsi F, Tessitore A, Corbo D, Sagnelli A, Paccone A, D’Ambrosio A, Piccirillo G, Cirillo M, Cirillo S, Monsurrò MR, Esposito F (2010) Interaction between aging and neurodegeneration in amyotropic lateral sclerosis. Neurobiol Aging. [Epub ahead of print]Google Scholar
  104. 104.
    Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5:42PubMedCrossRefGoogle Scholar
  105. 105.
    Turken AU, Dronkers NF (2011) The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci 5:1PubMedCrossRefGoogle Scholar
  106. 106.
    Van den Heuvel M, Mandl R, Hulshoff Pol H (2008) Normalized cut group clustering of resting-state FMRI data. PLoS One 3:e2001PubMedCrossRefGoogle Scholar
  107. 107.
    Van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534PubMedCrossRefGoogle Scholar
  108. 108.
    Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL (2010) Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 103:297–321PubMedCrossRefGoogle Scholar
  109. 109.
    Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P, Schnakers C, Soddu A, Perlbarg V, Ledoux D, Brichant JF, Moonen G, Maquet P, Greicius MD, Laureys S, Boly M (2010) Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133:161–171PubMedCrossRefGoogle Scholar
  110. 110.
    Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86PubMedCrossRefGoogle Scholar
  111. 111.
    Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, Wu T, Jiang T, Li K (2006) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31:496–504PubMedCrossRefGoogle Scholar
  112. 112.
    Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006) The neural bases of momentary lapses in attention. Nat Neurosci 9:971–978PubMedCrossRefGoogle Scholar
  113. 113.
    Welsh RC, Chen AC, Taylor SF (2010) Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia. Schizophr Bull 36:713–722PubMedCrossRefGoogle Scholar
  114. 114.
    Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW et al (2009) Hyperactivity, hyperconnectivity of the default network in schizophrenia, in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci USA 106:1279–1284PubMedCrossRefGoogle Scholar
  115. 115.
    Zhang D, Johnston JM, Fox MD, Leuthardt EC, Grubb RL, Chicoine MR, Smyth MD, Snyder AZ, Raichle ME, Shimony JS (2009) Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery 65:226–236PubMedCrossRefGoogle Scholar
  116. 116.
    Zhang D, Raichle ME (2010) Disease and the brain’s dark energy. Nat Rev Neurol 6:15–28PubMedCrossRefGoogle Scholar
  117. 117.
    Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, Liu Z, Jiang T (2007) Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 97:194–205PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Scientific DepartmentFondazione IRCCS Istituto Neurologico “Carlo Besta”MilanItaly

Personalised recommendations