Neurological Sciences

, Volume 31, Supplement 2, pp 255–259 | Cite as

Cognitive deficits in experimental autoimmune encephalomyelitis: neuroinflammation and synaptic degeneration

  • G. Mandolesi
  • G. Grasselli
  • G. Musumeci
  • Diego Centonze


Multiple sclerosis (MS) is characterized by auto-reactive T cells that respond to central nervous system (CNS)-based antigens and affect motor, sensory as well as behavioral and cognitive functions. Cognitive deficits are now considered an early manifestation of the disease in MS patients. However, the pathophysiology responsible for the cognitive symptoms in MS remains unclear. Increasing evidence from a mouse model of MS, the experimental autoimmune encephalomyelitis (EAE), suggests a correlation between the synaptopathy induced by microglia activation in the early phase of the disease and cognitive dysfunction. In particular, EAE causes deficits in hippocampal-dependent learning and memory that are associated with early microglial activation, synaptic loss and neurodegeneration. Interestingly, inflammatory cytokines released from infiltrating lymphocytes or activated microglia are able to alter synaptic transmission. Increased glutamate-mediated transmission and loss of GABAergic inputs were observed in EAE. They may thus underlie cognitive dysfunction in this model and in MS.


EAE Synaptic alteration Microglia Excitotoxicity GABA interneurons 


Conflict of interest statement

The authors declare that they have no conflict of interest related to the publication of this article.


  1. 1.
    Steinman L (2001) Multiple sclerosis: a two-stage disease. Nat Immunol 2(9):762–764CrossRefPubMedGoogle Scholar
  2. 2.
    Centonze D, Muzio L, Rossi S, Furlan R, Bernardi G, Martino G (2009) The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death Differ. doi: 10.1038/cdd.2009.179
  3. 3.
    Roosendaal SD, Hulst HE, Vrenken H, Feenstra HE, Castelijns JA, Pouwels PJ, Barkhof F, Geurts JJ (2010) Structural and functional hippocampal changes in multiple sclerosis patients with intact memory function. Radiology 255(2):595–604CrossRefPubMedGoogle Scholar
  4. 4.
    D’Intino G, Paradisi M, Fernandez M, Giuliani A, Aloe L, Giardino L, Calzà L (2005) Cognitive deficit associated with cholinergic and nerve growth factor down-regulation in experimental allergic encephalomyelitis in rats. Proc Natl Acad Sci USA 102(8):3070–3075CrossRefPubMedGoogle Scholar
  5. 5.
    Tu JL, Zhao CB, Vollmer T, Coons S, Lin HJ, Marsh S, Treiman DM, Shi J (2009) APOE 4 polymorphism results in early cognitive deficits in an EAE model. Biochem Biophys Res Commun 384(4):466–470CrossRefPubMedGoogle Scholar
  6. 6.
    Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 29(48):15317–15322Google Scholar
  7. 7.
    Shi J, Zhao CB, Vollmer TL, Tyry TM, Kuniyoshi SM (2008) APOE epsilon 4 allele is associated with cognitive impairment in patients with multiple sclerosis. Neurology 70(3):185–190CrossRefPubMedGoogle Scholar
  8. 8.
    Ziehn MO, Avedisian AA, Tiwari-Woodruff S, Voskuhl RR (2010) Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. Lab Invest. doi: 10.1038/labinvest.2010.6
  9. 9.
    Muzio L, Martino G, Furlan R (2007) Multifaceted aspects of inflammation in multiple sclerosis: the role of microglia. J Neuroimmunol 191(1–2):39–44CrossRefPubMedGoogle Scholar
  10. 10.
    Stover JF, Lowitzsch K, Kempski OS (1997) Cerebrospinal fluid hypoxanthine, xanthine and uric acid levels may reflect glutamate-mediated excitotoxicity in different neurological diseases. Neurosci Lett 238:25–28CrossRefPubMedGoogle Scholar
  11. 11.
    Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D (2005) Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3T. Brain 128:1016–1025CrossRefPubMedGoogle Scholar
  12. 12.
    Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6(1):67–70CrossRefPubMedGoogle Scholar
  13. 13.
    Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66CrossRefPubMedGoogle Scholar
  14. 14.
    Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A, Musella A, D’Amelio M, Cavallucci V, Martorana A, Bergamaschi A, Cencioni MT, Diamantini A, Butti E, Comi G, Bernardi G, Cecconi F, Battistini L, Furlan R, Martino G (2009) Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 29:3442–3452CrossRefPubMedGoogle Scholar
  15. 15.
    Caramia MD, Palmieri MG, Desiato MT, Boffa L, Galizia P, Rossini PM, Centonze D, Bernardi G (2004) Brain excitability changes in the relapsing and remitting phases of multiple sclerosis: a study with transcranial magnetic stimulation. Clin Neurophysiol 115(4):956–965CrossRefPubMedGoogle Scholar
  16. 16.
    Clements RJ, McDonough J, Freeman EJ (2008) Distribution of parvalbumin and calretinin immunoreactive interneurons in motor cortex from multiple sclerosis post-mortem tissue. Exp Brain Res 187(3):459–465CrossRefPubMedGoogle Scholar
  17. 17.
    Morellini F, Sivukhina E, Stoenica L, Oulianova E, Bukalo O, Jakovcevski I, Dityatev A, Irintchev A, Schachner M (2010) Improved reversal learning and working memory and enhanced reactivity to novelty in mice with enhanced GABAergic innervation in the dentate gyrus. Cereb Cortex. doi: 10.1093/cercor/bhq017
  18. 18.
    Chard DT, Griffin CM, McLean MA, Kapeller P, Kapoor R, Thompson AJ, Miller DH (2002) Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing–remitting multiple sclerosis. Brain 125(Pt 10):2342–2352CrossRefPubMedGoogle Scholar
  19. 19.
    Rosin C, Bates TE, Skaper SD (2004) Excitatory amino acid induced oligodendrocyte cell death in vitro: receptor-dependent and -independent mechanisms. J Neurochem 90(5):1173–1185CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • G. Mandolesi
    • 1
  • G. Grasselli
    • 1
    • 2
  • G. Musumeci
    • 1
    • 2
  • Diego Centonze
    • 1
    • 2
  1. 1.Centro Europeo per la Ricerca sul Cervello (CERC)/Fondazione Santa LuciaRomeItaly
  2. 2.Neurologic Clinic, Department of NeuroscienceTor Vergata UniversityRomeItaly

Personalised recommendations