Neurological Sciences

, Volume 32, Issue 2, pp 221–228 | Cite as

Proteomics analysis of MPP+-induced apoptosis in SH-SY5Y cells

  • Hongrong Xie
  • Ming Chang
  • Xinyu Hu
  • Danping Wang
  • Mingxiu Tian
  • Guoyi Li
  • Huiyi Jiang
  • Ying Wang
  • Zhong Dong
  • Yuhua Zhang
  • Linsen HuEmail author
Original Article


Accumulating evidence suggests that oxidative stress plays a pivotal role in dopaminergic neurodegeneration. However, the kinds of proteins involved in the response to oxidative stress remain unclear. In the present study, SH-SY5Y cells were treated with neurotoxin 1-methyl-4-phenyl-pyridinium ion (MPP+) to induce apoptotic neuronal injury. 2D-DIGE followed by MALDI-TOF-MS was used to determine the changing protein levels. Proteomics analysis revealed that 22 proteins were differentially altered in MPP+-treated SH-SY5Y cells, of which 7 were up-regulated proteins and 15 were down-regulated proteins, respectively. Three protein spots were unambiguously identified as sorcin, annexin V, and ribosomal protein P0. The three proteins showed a significant increase in level, suggesting a role in MPP+-induced apoptosis. The functional roles of these three proteins collectively indicate that multiple mechanisms are pertinent in the underlying pathogenesis of Parkinson’s disease (PD), such as apoptosis, calcium homeostasis, and DNA insults.


Proteomics SH-SY5Y cells MPP+ Sorcin Annexin V Ribosomal protein P0 



This work was supported by a grant from the Distinguished Professor Foundation of Jilin University to Dr. Linsen Hu (450011011204).


  1. 1.
    Selvaraj S, Watt JA, Singh BB (2009) TRPC1 inhibits apoptotic cell degeneration induced by dopaminergic neurotoxin MPTP/MPP(+). Cell Calcium 46:209–218PubMedCrossRefGoogle Scholar
  2. 2.
    Gandhi S, Wood NW (2005) Molecular pathogenesis of Parkinson’s disease. Hum Mol Genet 14:2749–2755CrossRefGoogle Scholar
  3. 3.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795PubMedCrossRefGoogle Scholar
  4. 4.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909PubMedCrossRefGoogle Scholar
  5. 5.
    Langston JW, Ballard PA Jr (1983) Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1, 2, 5, 6-tetrahydropyridine. N Engl J Med 309:310PubMedGoogle Scholar
  6. 6.
    Di Benedetto M, Cavina C, D’Addario C, Leoni G, Candeletti S, Cox BM et al (2009) Alterations of N/OFQ and NOP receptor gene expression in the substantia nigra and caudate putamen of MPP+ and 6-OHDA lesioned rats. Neuropharmacology 56:761–767PubMedCrossRefGoogle Scholar
  7. 7.
    Colapinto M, Mila S, Giraudo S, Stefanazzi P, Molteni M, Rossetti C et al (2006) alpha-Synuclein protects SH-SY5Y cells from dopamine toxicity. Biochem Biophys Res Commun 349:1294–1300PubMedCrossRefGoogle Scholar
  8. 8.
    Hanash S (2003) Disease proteomics. Nature 422:226–232PubMedCrossRefGoogle Scholar
  9. 9.
    Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M et al (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang L, Chang M, Li H, Hou S, Zhang Y, Hu Y et al (2007) Proteomic changes of PC12 cells treated with proteasomal inhibitor PSI. Brain Res 1153:196–203PubMedCrossRefGoogle Scholar
  11. 11.
    Lee do Y, Lee KS, Lee HJ, Noh YH, Kim do H, Lee JY et al (2008) Kynurenic acid attenuates MPP(+)-induced dopaminergic neuronal cell death via a Bax-mediated mitochondrial pathway. Eur J Cell Biol 87:389–397PubMedCrossRefGoogle Scholar
  12. 12.
    Jin J, Hulette C, Wang Y, Zhang T, Pan C, Wadhwa R, Zhang J (2006) Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol Cell Proteomics 5:1193–1204PubMedCrossRefGoogle Scholar
  13. 13.
    Werner CJ, Heyny-von Haussen R, Mall G, Wolf S (2008) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteome Sci 6:8PubMedCrossRefGoogle Scholar
  14. 14.
    Matsumoto T, Hisamatsu Y, Ohkusa T, Inoue N, Sato T, Suzuki S et al (2005) Sorcin interacts with sarcoplasmic reticulum Ca(2+)-ATPase and modulates excitation-contraction coupling in the heart. Basic Res Cardiol 100:250–262PubMedCrossRefGoogle Scholar
  15. 15.
    Fowler MR, Colotti G, Chiancone E, Higuchi Y, Seidler T, Smith GL (2009) Complex modulation of L-type Ca(2+) current inactivation by sorcin in isolated rabbit cardiomyocytes. Pflugers Arch 457:1049–1060PubMedCrossRefGoogle Scholar
  16. 16.
    Qi J, Liu N, Zhou Y, Tan Y, Cheng Y, Yang C et al (2006) Overexpression of sorcin in multidrug resistant human leukemia cells and its role in regulating cell apoptosis. Biochem Biophys Res Commun 349:303–309PubMedCrossRefGoogle Scholar
  17. 17.
    Kawakami M, Nakamura T, Okamura N, Komoto C, Markova S, Kobayashi H et al (2007) Knock-down of sorcin induces up-regulation of MDR1 in HeLa cells. Biol Pharm Bull 30:1065–1073PubMedCrossRefGoogle Scholar
  18. 18.
    Diaz-Blanco E, Bruns I, Neumann F, Fischer JC, Graef T, Rosskopf M et al (2007) Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 21:494–504PubMedCrossRefGoogle Scholar
  19. 19.
    Terkawi MA, Jia H, Zhou J, Lee EG, Igarashi I, Fujisaki K et al (2007) Babesia gibsoni ribosomal phosphoprotein P0 induces cross-protective immunity against B. microti infection in mice. Vaccine 25:2027–2035PubMedCrossRefGoogle Scholar
  20. 20.
    Mangano EN, Hayley S (2009) Inflammatory priming of the substantia nigra influences the impact of later paraquat exposure: neuroimmune sensitization of neurodegeneration. Neurobiol Aging 30:1361–1378PubMedCrossRefGoogle Scholar
  21. 21.
    Yuan X, Kuramitsu Y, Furumoto H, Zhang X, Hayashi E, Fujimoto M et al (2007) Nuclear protein profiling of Jurkat cells during heat stress-induced apoptosis by 2-DE and MS/MS. Electrophoresis 28:2018–2026PubMedCrossRefGoogle Scholar
  22. 22.
    Monge M, Vilaseca M, Soto-Cerrato V, Montaner B, Giralt E, Perez-Tomas R (2007) Proteomic analysis of prodigiosin-induced apoptosis in a breast cancer mitoxantrone-resistant (MCF-7 MR) cell line. Investig New Drugs 25:21–29CrossRefGoogle Scholar
  23. 23.
    Nishida J, Shiratsuchi A, Nadano D, Sato TA, Nakanishi Y (2002) Structural change of ribosomes during apoptosis: degradation and externalization of ribosomal proteins in doxorubicin-treated Jurkat cells. J Biochem 131:485–493PubMedGoogle Scholar
  24. 24.
    Chetsawang B, Kooncumchoo P, Govitrapong P, Ebadi M (2008) 1-Methyl-4-phenyl-pyridinium ion-induced oxidative stress, c-Jun phosphorylation and DNA fragmentation factor-45 cleavage in SK-N-SH cells are averted by selegiline. Neurochem Int 53:283–288PubMedCrossRefGoogle Scholar
  25. 25.
    Vermes I, Steur EN, Reutelingsperger C, Haanen C (1999) Decreased concentration of annexin V in parkinsonian cerebrospinal fluid: speculation on the underlying cause. Mov Disord 14:1008–1010PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hongrong Xie
    • 1
    • 3
  • Ming Chang
    • 1
  • Xinyu Hu
    • 2
  • Danping Wang
    • 1
  • Mingxiu Tian
    • 1
  • Guoyi Li
    • 1
  • Huiyi Jiang
    • 1
  • Ying Wang
    • 1
  • Zhong Dong
    • 1
  • Yuhua Zhang
    • 3
  • Linsen Hu
    • 1
    Email author
  1. 1.Department of Neurology, The First HospitalJilin UniversityChangchunPeople’s Republic of China
  2. 2.The Second HospitalJilin UniversityChangchunChina
  3. 3.Department of Computerized TomographyDaqing Oilfield General HospitalDaqingChina

Personalised recommendations