Neurological Sciences

, Volume 31, Issue 5, pp 565–569 | Cite as

Effect of entacapone on plasma homocysteine levels in Parkinson’s disease patients

  • Martin Nevrly
  • Petr Kanovsky
  • Hana Vranova
  • Katerina Langova
  • Petr Hlustik
Original Article

Abstract

Peripheral metabolism of l-DOPA via enzyme catechol-O-methyltransferase (COMT) is one of the possible sources of homocysteine (HCY). The aim of this study was to assess plasma HCY levels in l-DOPA-treated Parkinson’s disease (PD) patients and its influence by adding the inhibitor COMT (entacapone). Patients were divided into two groups: (1) patients long term treated with l-DOPA but were naïve to entacapone, (2) l-DOPA naïve patients, in whom a combined treatment with l-DOPA and entacapone was started. The HCY levels were higher in Group 1 than in Group 2. No statistically significant changes of HCY concentrations were found in both patient groups after adding entacapone to their l-DOPA treatments. Results of this study confirm that patients treated with l-DOPA for a long term have increased plasma HCY concentrations. We believe combined l-DOPA and entacapone therapy could be a possible protective mechanism against hyperhomocysteinemia in early PD.

Keywords

Homocysteine Parkinson’s disease Entacapone 

References

  1. 1.
    Morris MS (2003) Homocysteine and Alzheimer’s disease. Lancet Neurol 2:425–428CrossRefPubMedGoogle Scholar
  2. 2.
    Morris MS, Jacques PF, Rosenberg IH et al (2000) Serum total homocysteine concentration is related to self-reported heart attack or stroke history among men and women in the NHANES III. J Nutr 130:3073–3076PubMedGoogle Scholar
  3. 3.
    Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG (1995) Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 346:1395–1398CrossRefPubMedGoogle Scholar
  4. 4.
    Welch GN, Loscalzo J (1998) Homocysteine and atherothrombosis. N Engl J Med 338:1042–1050CrossRefPubMedGoogle Scholar
  5. 5.
    Seshadri S, Beiser A, Selhub J et al (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483CrossRefPubMedGoogle Scholar
  6. 6.
    Jellinger KA (2003) Prevalence of cerebrovascular lesions in Parkinson’s disease. A postmortem study. Acta Neuropathol (Berl) 105:415–419Google Scholar
  7. 7.
    Kubová D, Rektor I (2001) Vaskulární parkinsonský syndrom—historie a současnost. Čes a Slov Neurol Neurochir 64(/97):75–81Google Scholar
  8. 8.
    Levy G, Tang MX, Louis ED et al (2002) The association of incident dementia with mortality in PD. Neurology 59:1708–1713PubMedGoogle Scholar
  9. 9.
    Rektorová I (2004) Účinek donepezilu na demenci u Parkinsonovy nemoci a Alzheimerovy nemoci. Pilotní studie. Čes a Slov Neurol Neurochir 67(/100):359–363Google Scholar
  10. 10.
    Valkovič P, Blažíček P, Benetin J, Kukumberg P (2006) Homocysteín, levodopa a Parkinsonova choroba. Čes a Slov Neurol Neurochir 69/102(3):183–188Google Scholar
  11. 11.
    Blandini F, Fancellu R, Martignoni E et al (2001) Plasma homocysteine and l-dopa metabolism in patients with Parkinson disease. Clin Chem 47:1102–1104PubMedGoogle Scholar
  12. 12.
    Miller JW, Selhub J, Nadeau MR, Thomas CA, Feldman RG, Wolf PA (2003) Effect of l-dopa on plasma homocysteine in PD patients: relationship to B-vitamin status. Neurology 60:1125–1129PubMedGoogle Scholar
  13. 13.
    Müller T, Werne B, Fowler B, Kuhn W (1999) Nigral endothelial dysfunction, homocysteine, and Parkinson’s disease. Lancet 354:126–127CrossRefPubMedGoogle Scholar
  14. 14.
    Ozer F, Meral H, Hanoglu L et al (2006) Plasma homocysteine levels in patients treated with levodopa: motor and cognitive associations. Neurol Res 28(8):853–858CrossRefPubMedGoogle Scholar
  15. 15.
    Rogers JD, Sanchez-Saffon A, Frol AB, Diaz-Arrastia R (2003) Elevated plasma homocysteine levels in patients treated with levodopa: association with vascular disease. Arch Neurol 60:59–64CrossRefPubMedGoogle Scholar
  16. 16.
    Valkovič P, Benetin J, Blažíček P, Valkovičová Ľ, Gmitterová K, Kukumberg P (2005) Reduced plasma homocysteine levels in levodopa/entacapone treated Parkinson patients. Parkinsonism Relat Disord 11:253–256CrossRefPubMedGoogle Scholar
  17. 17.
    Yasui K, Nakaso K, Kowa H, Takeshima T, Nakashima K (2003) Levodopa-induced hyperhomocysteinaemia in Parkinson’s disease. Acta Neurol Scand 108:66–67CrossRefPubMedGoogle Scholar
  18. 18.
    Zoccolella S, Lamberti P, Armenise E et al (2005) Plasma homocysteine levels in Parkinson’s disease: role of antiparkinsonian medications. Parkinsonism Relat Disord 11:131–133CrossRefPubMedGoogle Scholar
  19. 19.
    Ostrem JL, Kang GA, Subramanian I et al (2005) The effect of entacapone on homocysteine levels in Parkinson disease. Neurology 64(8):1482PubMedGoogle Scholar
  20. 20.
    Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157(Suppl 2):S40–S44CrossRefPubMedGoogle Scholar
  21. 21.
    Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246CrossRefPubMedGoogle Scholar
  22. 22.
    American Society of Human Genetics/American College of Medical Genetics Test, Transfer Committee Working Group (2008) Measurement and use of total plasma homocysteine. Am J Hum Genet 63:1541–1543Google Scholar
  23. 23.
    Genest JJ Jr, McNamara JR, Upson B et al (1991) Prevalence of familial hyperhomocyst(e)inemia in men with premature coronary artery disease. Arterioscler Thromb 11:1129–1136PubMedGoogle Scholar
  24. 24.
    Haynes WG (2002) Hyperhomocysteinemia, vascular function and atherosclerosis: effects of vitamins. Cardiovasc Drugs Ther 16:391–399CrossRefPubMedGoogle Scholar
  25. 25.
    Selhub J, Jacques PF, Bostom AG et al (1995) Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 332:286–291CrossRefPubMedGoogle Scholar
  26. 26.
    Stanger O, Herrmann W, Pietrzik K et al (2003) DACH-LIGA homocystein (german, austrian and swiss homocysteine society): consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: guidelines and recommendations. Clin Chem Lab Med 41:1392–1403CrossRefPubMedGoogle Scholar
  27. 27.
    Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146CrossRefPubMedGoogle Scholar
  28. 28.
    Allain P, Le BA, Cordillet E, Le QL, Bagheri H, Montastruc JL (1995) Sulfate and cysteine levels in the plasma of patients with Parkinson’s disease. Neurotoxicology 16:527–529PubMedGoogle Scholar
  29. 29.
    Kuhn W, Roebroek R, Blom H et al (1998) Elevated plasma levels of homocysteine in Parkinson’s disease. Eur Neurol 40:225–227CrossRefPubMedGoogle Scholar
  30. 30.
    Miller JW (2002) Homocysteine, folate deficiency, and Parkinson’s disease. Nutr Rev 60:410–413CrossRefPubMedGoogle Scholar
  31. 31.
    Nakaso K, Yasui K, Kowa H et al (2003) Hypertrophy of IMC of carotid artery in Parkinson’s disease is associated with l-DOPA, homocysteine, and MTHFR genotype. J Neurol Sci 207:19–23CrossRefPubMedGoogle Scholar
  32. 32.
    O’Suilleabhain PE, Bottiglieri T, Dewey RB Jr, Sharma S, Diaz-Arrastia R (2004) Modest increase in plasma homocysteine follows levodopa initiation in Parkinson’s disease. Mov Disord 19:1403–1408CrossRefPubMedGoogle Scholar
  33. 33.
    Yasui K, Kowa H, Nakaso K, Takeshima T, Nakashima K (2000) Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology 55:437–440PubMedGoogle Scholar
  34. 34.
    Daniel SE, Lees AJ (1993) Disease Society Brain Bank, London: overview and research. J Neural Transm Suppl 39:165–172PubMedGoogle Scholar
  35. 35.
    Refsum H, Smith AD, Ueland PM et al (2004) Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 50(1):3–32CrossRefPubMedGoogle Scholar
  36. 36.
    Lamberti P, Zoccolella S, Armenise E et al (2005) Hyperhomocysteinemia in l-dopa treated Parkinson’s disease patients: effect of cobalamin and folate administration. Eur J Neurol 12:365–368CrossRefPubMedGoogle Scholar
  37. 37.
    Bareš M, Kaňovský P, Rektor I (2002) Úloha inhibitorů katechol-O-metyl-transferázy (COMT) v léčbě pozdních komplikací Parkinsonovy nemoci—účinnost a bezpečnost entakaponu (Comtan®). Čes a Slov Neurol Neurochir 65(/98):69–75Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Martin Nevrly
    • 1
  • Petr Kanovsky
    • 1
  • Hana Vranova
    • 1
  • Katerina Langova
    • 2
  • Petr Hlustik
    • 1
  1. 1.Department of NeurologyUniversity Hospital and Palacký University Medical SchoolOlomoucCzech Republic
  2. 2.Department of BiophysicsPalacký University Medical SchoolOlomoucCzech Republic

Personalised recommendations