Neurological Sciences

, Volume 31, Issue 3, pp 283–291 | Cite as

CSF proteomic analysis in patients with normal pressure hydrocephalus selected for the shunt: CSF biomarkers of response to surgical treatment

  • Antonio Scollato
  • Alessandro Terreni
  • Anna Caldini
  • Benedetta Salvadori
  • Pasquale Gallina
  • Simona Francese
  • Guido Mastrobuoni
  • Giuseppe Pieraccini
  • Gloriano Moneti
  • Luca Bini
  • Gianni Messeri
  • Nicola Di Lorenzo
Original Article

Abstract

The aim of our pilot study was to investigate, by a proteomic approach, the expressed differences in cerebrospinal fluid (CSF) protein patterns in order to aid in the diagnosis and treatment of normal pressure hydrocephalus (NPH). Seventeen patients with NPH, selected by Intracranial-Pressure monitoring (ICPmo), underwent implantation of a shunt and after 6 months were clinically re-evaluated. Thirteen patients improved, whereas four did not. During ICPmo CSF was collected and its proteoma was analyzed by 2D gel electrophoresis and mass spectrometry. The over-expression of α2HS glycoprotein, α1 antichimotrypsin and α1beta glycoprotein and the under-expression of glial fibrillary acidic protein, apolipoproteins (AIV, J and E), complement C3c, anti-thrombin, α2 antiplasmin and albumin seem to be associated with a positive response to surgery. Most of these proteins have been reported to be altered in Alzheimer disease, supporting the hypothesis of a possible link between these two nosological entities.

Keywords

Normal pressure hydrocephalus Cerebrospinal fluid Proteoma 2D-electrophoresis 

References

  1. 1.
    Adams RD, Fischer CM, Hakim S, Ojemann RG, Sweet WH (1965) Symptomatic occult hydrocephalus with “normal” cerebrospinal fluid pressure: a treatable syndrome. N Engl J Med 273:117–126PubMedCrossRefGoogle Scholar
  2. 2.
    Fisher CM (1982) Hydrocephalus as a cause of disturbances of gait in the elderly. Neurology 32:1358–1363PubMedGoogle Scholar
  3. 3.
    Black P (1980) Idiopathic normal-pressure hydrocephalus. Results of shunting in 62 patients. J Neurosurg 52:371–377CrossRefPubMedGoogle Scholar
  4. 4.
    Bergsneider M, Black PM, Klinge P, Marmarou A, Relkin N (2005) Surgical management of idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3 Suppl):S29–S39PubMedGoogle Scholar
  5. 5.
    Savolainen S, Paljarvi L, Vapalahti M (1999) Prevalence of Alzheimer’s disease in patients investigated for presumed normal pressure hydrocephalus: a clinical and neuropathological study. Acta Neurochir (Wien) 141:849–853CrossRefGoogle Scholar
  6. 6.
    Vanneste J, Augustijn P, Dirven C, Tan WF, Goedhart ZD (1992) Shunting normal-pressure hydrocephalus: do the benefits outweigh the risks? A multicenter study and literature review. Neurology 42:54–59PubMedGoogle Scholar
  7. 7.
    Vanneste J, Augustijn P, Davies GA, Dirvan C, Tan WF (1992) Normal-pressure hydrocephalus: is cisternography still useful in selecting patients for a shunt? Arch Neurol 49:366–370PubMedGoogle Scholar
  8. 8.
    Malm J, Kristensen B, Karlsson T, Fagerlund M, Elfverson J, Ekstedt J (1995) The predictive value of cerebrospinal fluid dynamic tests in patients with the idiopathic adult hydrocephalus syndrome. Arch Neurol 52:783–789PubMedGoogle Scholar
  9. 9.
    Walchenbach R, Geiger E, Thomeer RT, Vanneste JA (2002) The value of temporary external lumbar CSF drainage in predicting the outcome of shunting on normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 72:503–506PubMedGoogle Scholar
  10. 10.
    Boon AJ, Tans JT, Delwel EJ, Egeler-Peerdeman SM, Hanlo PW, Wurzer HA et al (1997) Dutch normal-pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid. J Neurosurg 87:687–693CrossRefPubMedGoogle Scholar
  11. 11.
    Raftopoulos C, Chaskis C, Delecluse F, Cantraine F, Bidaut L, Brotchi J (1992) Morphological quantitative analysis of intracranial pressure waves in normal pressure hydrocephalus. Neurol Res 14:389–396PubMedGoogle Scholar
  12. 12.
    Williams MA, Razumovsky AY, Hanley DF (1998) Comparison of Pcsf monitoring and controlled CSF drainage diagnose normal pressure hydrocephalus. Acta Neurochir Suppl 71:328–330PubMedGoogle Scholar
  13. 13.
    Brettschneider J, Riepe MW, Petereit HF, Ludolph AC, Tumani H (2004) Meningeal derived cerebrospinal fluid proteins in different forms of dementia: is a meningopathy involved in normal pressure hydrocephalus? J Neurol Neurosurg Psychiatry 75:1614–1616CrossRefPubMedGoogle Scholar
  14. 14.
    Nacmias B, Tedde A, Guarnieri BM, Petruzzi C, Ortenzi L, Serio A et al (1997) Analysis of apolipoprotein E, alpha1-antichymotripsin and presenilin-1 genes polymorphisms in dementia caused by normal pressure hydrocephalus in man. Neurosci Lett 229:177–180CrossRefPubMedGoogle Scholar
  15. 15.
    Choe LH, Dutt MJ, Relkin N, Lee KH (2002) Studies of potential cerebrospinal fluid molecular markers for Alzheimer’s disease. Electrophoresis 23:2247–2251CrossRefPubMedGoogle Scholar
  16. 16.
    Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2:506–511CrossRefPubMedGoogle Scholar
  17. 17.
    Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H et al (2001) The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 57:1763–1766PubMedGoogle Scholar
  18. 18.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatry Res 12:189–198CrossRefGoogle Scholar
  19. 19.
    Raftopoulos C, Deleval J, Chaskis C, Leonard A, Cantraine F, Desmyttere F, Clarysse S, Brotchi J (1994) Cognitive recovery in idiopathic normal pressure hydrocephalus: a prospective study. Neurosurgery 35(3):397–404CrossRefPubMedGoogle Scholar
  20. 20.
    Castagna A, Campostrini N, Farinazzo A, Zanusso G, Monaco S, Righetti PG (2002) Comparative two-dimensional mapping of prion protein isoforms in human cerebrospinal fluid and central nervous system. Electrophoresis 23:339–346CrossRefPubMedGoogle Scholar
  21. 21.
    Prosinecki V, Botelho HM, Francese S, Mastrobuoni G, Moneti G, Urich M, Kletzin A, Gomes CM (2006) A proteomic approach toward the selection of proteins with enhanced intrinsic conformational stability. J Proteome Res 5:2720–2726CrossRefPubMedGoogle Scholar
  22. 22.
    Nishihara JC, Champion KM (2002) Quantitative evaluation of proteins in one- and two-dimensional polyacrylamide gels using a fluorescent stain. Electrophoresis 23:2203–2215CrossRefPubMedGoogle Scholar
  23. 23.
    Davson HK, Welch K, Segal MB (1987) The physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone, New YorkGoogle Scholar
  24. 24.
    May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI (1990) Cerebrospinal fluid production is reduced in healthy aging. Neurology 40:500–503PubMedGoogle Scholar
  25. 25.
    Knuckey NW, Preston J, Palm D, Epstein MH, Johanson C (1993) Hydrocephalus decreases chloride efflux from the choroids plexus epithelium. Brain Res 618:313–317CrossRefPubMedGoogle Scholar
  26. 26.
    Preston JE (2001) Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech 52:31–37CrossRefPubMedGoogle Scholar
  27. 27.
    Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G et al (2004) Homeostatic capabilities of the choroid plexus epithelium in Alzheimer’s disease. Cerebrospinal Fluid Res 1:3CrossRefPubMedGoogle Scholar
  28. 28.
    Veenstra TD, Conrads TP, Hood BL, Avellino AM, Ellenbogen RG, Morrison RS (2005) Biomarkers: mining the biofluid proteome. Mol Cell Proteomics 4:409–418CrossRefPubMedGoogle Scholar
  29. 29.
    Petzold A, Keir G, Green AJ, Giovannoni G, Thompson EJ (2004) An ELISA for glial fibrillary acidic protein. J Immunol Methods 287:169–177CrossRefPubMedGoogle Scholar
  30. 30.
    Greber S, Lubec G, Cairns N, Fountoulakis M (1999) Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down syndrome and Alzheimer’s disease. Electrophoresis 20(4–5):928–934CrossRefPubMedGoogle Scholar
  31. 31.
    Boyles JK, Notterpek LM, Anderson LJ (1990) Accumulation of apolipoproteins in the regenerating and remyelinating mammalian peripheral nerve. J Biol Chem 265:17805–17815PubMedGoogle Scholar
  32. 32.
    Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P (2003) Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Mol Brain Res 118:140–146CrossRefPubMedGoogle Scholar
  33. 33.
    Ishioka N, Takahashi N, Putnam FW (1986) Amino acid sequence of human plasma a1B-glycoprotein: homology to the immunoglobulin supergene family. Proc Natl Acad Sci USA 83:2363–2367CrossRefPubMedGoogle Scholar
  34. 34.
    Lescuyer P, Hochstrasser DF, Sanchez JC (2004) Comprehensive proteome analysis by chromatographic protein prefractionation. Electrophoresis 25:1125–1135CrossRefPubMedGoogle Scholar
  35. 35.
    Holtzmann DM (2004) In vivo effects of ApoE and clusterin on amyloid-beta metabolism and neuropathology. J Mol Neurosci 23:247–254CrossRefGoogle Scholar
  36. 36.
    Jenne DE, Lowin B, Peitsch MC, Böttcher A, Schmitz G, Tschopp J (1991) Clusterin (complement lysis inhibitor) forms a high density lipoprotein complex with apolipoprotein A-I in human plasma. J Biol Chem 266:11030–11036PubMedGoogle Scholar
  37. 37.
    May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE (1990) Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron 5:831–839CrossRefPubMedGoogle Scholar
  38. 38.
    Ghiso J, Matsubara E, Koudinov A, Choi-Miura NH, Tomita M, Wisniewski T et al (1993) The cerebrospinal-fluid soluble form of Alzheimer’s amyloid beta is complexed to SP-40, 40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem J 293:27–30PubMedGoogle Scholar
  39. 39.
    Munoz DG, Erkinjuntti T, Gaytan-Garcia S, Hachinski V (1997) Serum protein leakage in Alzheimer’s disease revisited. Ann N Y Acad Sci 826:173–189CrossRefPubMedGoogle Scholar
  40. 40.
    Takeuchi T, Kasahara E, Iwasaki M, Mima T, Mori K (2000) Indications for shunting in patients with idiopathic normal pressure hydrocephalus presenting with dementia and brain atrophy (atypical idiopathic normal pressure hydrocephalus). Neurol Med Chir (Tokyo) 40:38–46CrossRefGoogle Scholar
  41. 41.
    Abraham CR, Selkoe DJ, Potter H (1988) Immunochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 52:487–501CrossRefPubMedGoogle Scholar
  42. 42.
    Gingrich MB, Traynelis SF (2000) Serine proteases and brain damage—is there a link? Trends Neurosci 23:399–407CrossRefPubMedGoogle Scholar
  43. 43.
    Li X, Miyajima M, Mineki R, Taka H, Murayama K, Arai H (2006) Analysis of potential diagnostic biomarkers in cerebrospinal fluid of idiopathic normal pressure hydrocephalus by proteomics. Acta Neurochir (Wien) 148(8):859–864CrossRefGoogle Scholar
  44. 44.
    Geroldi D, Minoretti P, Bianchi M, Di Vito C, Reino M, Bertona M et al (2005) Genetic association of alpha2-Heremans-Schmid glycoprotein polymorphism with late-onset Alzheimer’s disease in Italians. Neurosci Lett 386:176–178CrossRefPubMedGoogle Scholar
  45. 45.
    Nawratil P, Lenzen S, Kellermann J, Haupt H, Schinke T, Muller-Esterl W et al (1996) Limited proteolysis of human alpha2-HS glycoprotein/fetuin. Evidence that a chymotryptic activity can release the connecting peptide. J Biol Chem 271:31735–31741CrossRefPubMedGoogle Scholar
  46. 46.
    Masliah E, Ho G, Wyss-Coray T (2001) Functional role of TGF beta in Alzheimer’s disease microvascular injury: lessons from transgenic mice. Neurochem Int 39:393–400CrossRefPubMedGoogle Scholar
  47. 47.
    Calero M, Rostagno A, Frangione B, Ghiso J (2005) Clusterin and Alzheimer’s disease. Subcell Biochem 38:273–298CrossRefPubMedGoogle Scholar
  48. 48.
    Mhatre M, Nguyen A, Kashani S, Pham T, Adesina A, Grammas P (2004) Thrombin, a mediator of neurotoxicity and memory impairment. Neurobiol Aging 25:783–793CrossRefPubMedGoogle Scholar
  49. 49.
    Brettschneider J, Claus A, Kassubek J, Tumani H (2005) Isolated blood-cerebrospinal fluid barrier dysfunction: prevalence and associated diseases. J Neurol 252:1067–1073CrossRefPubMedGoogle Scholar
  50. 50.
    Garcia JH, Ho KL, Caccamo DV (1994) Intracerebral hemorrhage: pathology of selected topics. In: Kase CS, Caplan LR (eds) Intracerebral hemorrhage. Butterworth-Heinemann, Boston, pp 45–72Google Scholar
  51. 51.
    Silverberg GD, Levinthal E, Sullivan EV, Bloch DA, Chang SD, Leverenz J et al (2002) Assessment of low-flow CSF drainage as a treatment for AD: results of a randomized pilot study. Neurology 59:1139–1145PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Antonio Scollato
    • 1
  • Alessandro Terreni
    • 2
  • Anna Caldini
    • 2
  • Benedetta Salvadori
    • 2
  • Pasquale Gallina
    • 1
  • Simona Francese
    • 3
  • Guido Mastrobuoni
    • 3
  • Giuseppe Pieraccini
    • 3
  • Gloriano Moneti
    • 3
  • Luca Bini
    • 4
  • Gianni Messeri
    • 2
  • Nicola Di Lorenzo
    • 1
  1. 1.Department of NeurosurgeryUniversity of FlorenceFlorenceItaly
  2. 2.Department of Laboratory DiagnosticCareggi University Hospital of FlorenceFlorenceItaly
  3. 3.Mass Spectrometry Center of the University of FlorenceFlorenceItaly
  4. 4.Functional Proteomics Laboratory, Department of Molecular BiologyUniversity of SienaSienaItaly

Personalised recommendations