Neurological Sciences

, Volume 31, Issue 1, pp 1–8 | Cite as

Alzheimer’s disease and endothelial dysfunction

  • Giuseppe Bomboi
  • Lorenzo Castello
  • Francesco Cosentino
  • Franco Giubilei
  • Francesco Orzi
  • Massimo Volpe
Review Article

Abstract

Recent studies suggest strong interactions between cerebrovascular and Alzheimer’s disease (AD) pathology. These conditions share common risk factors and individuals having both frequently show greater cognitive impairment than those affected by only one disease. Many studies point to early vascular dysregulations in AD. The exchange between vascular and neural cells occurs through mechanisms not completely understood, involving interactions among endothelial, glial, neuronal and smooth muscle cells within the neurovascular unit. Studies suggest that the dysregulation of the unit is likely associated with hypertension and other systemic diseases. Associations between hypertension and cognitive decline are not established, but other variables associated with hypertension could create a causal link. Many studies have lacked a consistent, quantitative neuropsychological approach for assessing cognitive functions. This approach is reductive, as the need for a formal neuropsychological assessment has gained broad recognition, and the definition of dementia has gone through revision processes, which are in progress.

Keywords

Alzheimer’s disease Vascular dysregulation Endothelial dysfunction Neuropsychological evaluation Hypertension Dementia 

References

  1. 1.
    Jorm AF, Korten AE, Henderson AS (1987) The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatr Scand 76:465–479CrossRefPubMedGoogle Scholar
  2. 2.
    Bush AI (2003) Copper, zinc, and the metallobiology of Alzheimer disease. Alz Dis Assoc Dis 17:147–150CrossRefGoogle Scholar
  3. 3.
    Bomboi G, Marchione F, Sepe-Monti M, De Carolis A, Bianchi V, Medda E, Pino A, Bocca B, Forte G, D’Ippolito C, Giubilei F (2005) Correlation between metal ions and clinical findings in subjects affected by Alzheimer’s disease. Ann Ist Super Sanita 41:205–212PubMedGoogle Scholar
  4. 4.
    Riekse RG, Leverenz JB, McCormick W, Bowen JD, Teri L, Nochlin D, Simpson K, Eugenio C, Larson EB, Tsuang D (2004) Effect of vascular lesions on cognition in Alzheimer’s disease: a community-based study. J Am Geriatr Soc 52:1442–1448CrossRefPubMedGoogle Scholar
  5. 5.
    Petrovitch H, Ross GW, Steinhorn SC, Abbott RD, Markesbery W, Davis D, Nelson J, Hardman J, Masaki K, Vogt MR, Launer L, White LR (2005) AD lesions and infarcts in demented and non-demented Japanese-American men. Ann Neurol 57:98–103CrossRefPubMedGoogle Scholar
  6. 6.
    Rockwood K, Davis H, MacKnight C, Vandorpe R, Gauthier S, Guzman A, Montgomery P, Black S, Hogan DB, Kertesz A, Bouchard R, Feldman H (2003) The consortium to investigate vascular impairment of cognition: methods and first findings. Can J Neurol Sci 30:237–243PubMedGoogle Scholar
  7. 7.
    van Oijen M, de Jong FJ, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM (2007) Atherosclerosis and risk for dementia. Ann Neurol 61:403–410CrossRefPubMedGoogle Scholar
  8. 8.
    Hofman A, Ott A, Breteler MM, Bots ML, Slooter AJ, van Harskamp F, van Duijn CN, Van Broeckhoven C, Grobbee DE (1997) Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet 349:151–154CrossRefPubMedGoogle Scholar
  9. 9.
    Ott A, Breteler MM, van Harskamp F, Stijnen T, Hofman A (1988) Incidence and risk of dementia. The Rotterdam Study. Am J Epidemiol 147:574–580Google Scholar
  10. 10.
    Monastero R, Palmer K, Qiu C, Winblad B, Fratiglioni L (2007) Heterogeneity in risk factors for cognitive impairment, no dementia: population-based longitudinal study from the Kungsholmen Project. Am J Geriatr Psychiatry 15:60–69CrossRefPubMedGoogle Scholar
  11. 11.
    Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L (2004) Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology 63:1181–1186PubMedGoogle Scholar
  12. 12.
    Qiu C, von Strauss E, Fastbom J et al (2003) Low blood pressure and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Arch Neurol 60:223–228CrossRefPubMedGoogle Scholar
  13. 13.
    Launer LJ, Andersen K, Dewey ME et al (1999) Rates and risk factors for dementia and Alzheimer’s disease: results from EURODEM pooled analyses. EURODEM Incidence Research Group and Work Groups. European Studies of Dementia. Neurology 52:78–84PubMedGoogle Scholar
  14. 14.
    Launer LJ, Masaki K, Petrovitch H et al (1995) The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia Aging Study. JAMA 274:1846–1851CrossRefPubMedGoogle Scholar
  15. 15.
    Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360CrossRefPubMedGoogle Scholar
  16. 16.
    de la Torre JC (2004) Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3:184–190CrossRefGoogle Scholar
  17. 17.
    Kalaria RN (2000) The role of cerebral ischemia in Alzheimer’s disease. Neurobiol Aging 21:321–330CrossRefPubMedGoogle Scholar
  18. 18.
    Lee BC, Mintun M, Buckner RL, Morris JC (2003) Imaging of Alzheimer’s disease. J Neuroimag 13:199–214Google Scholar
  19. 19.
    Rapoport SI (1999) Functional brain imaging in the resting state and during activation in Alzheimer’s disease. Implications for disease mechanisms involving oxidative phosphorylation. Ann N Y Acad Sci 893:138–153CrossRefPubMedGoogle Scholar
  20. 20.
    Pakrasi S, O’Brien JT (2005) Emission tomography in dementia. Nucl Med Commun 26:189–196CrossRefPubMedGoogle Scholar
  21. 21.
    Bar KJ, Boettger MK, Seidler N et al (2007) Influence of galantamine on vasomotor reactivity in Alzheimer’s disease and vascular dementia due to cerebral microangiopathy. Stroke 38:3186–3192CrossRefPubMedGoogle Scholar
  22. 22.
    Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100:328–335CrossRefPubMedGoogle Scholar
  23. 23.
    Faraci FM, Heistad DD (1998) Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 78:53–97PubMedGoogle Scholar
  24. 24.
    Heistad DD, Kontos HA (1983) Cerebral circulation. In: Handbook of Physiology. The cardiovascular system. Circulation and organ blood flow. American Physiol Soc, Bethesda, MD, sect 2, vol III, pt 1, chap 5, pp 137–82Google Scholar
  25. 25.
    Jennings JR, Muldoon MF, Ryan C et al (2005) Reduced cerebral blood flow response and compensation among patients with untreated hypertension. Neurology 64:1358–1365PubMedGoogle Scholar
  26. 26.
    Sausbier M, Schubert R, Voigt V et al (2000) Mechanisms of NO/cGMP-dependent vasorelaxation. Circ Res 87:825–830PubMedGoogle Scholar
  27. 27.
    Kazama K, Wang G, Frys K et al (2003) Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex. Am J Physiol Heart Circ Physiol 285:1890–1899Google Scholar
  28. 28.
    Vallance P, Chan N (2001) Endothelial function and nitric oxide: clinical relevance. Heart 85:342–350CrossRefPubMedGoogle Scholar
  29. 29.
    Marsden PA, Heng HH, Scherer SW et al (1993) Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem 268:17478–17488PubMedGoogle Scholar
  30. 30.
    Radomski MW, Palmer RM, Moncada S (1987) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92:639–646PubMedGoogle Scholar
  31. 31.
    Lüscher TF, Vanhoutte PM (1990) The Endothelium: Modulator of Cardiovascular Function. CRC Press, Boca Raton, Fla, pp 1–215Google Scholar
  32. 32.
    De Caterina R, Libby P, Peng HB et al (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96:60–68CrossRefPubMedGoogle Scholar
  33. 33.
    Gauthier TW, Scalia R, Murohara T et al (1995) Nitric oxide protects against leukocyte–endothelium interactions in the early stages of hypercholesterolemia. Arterioscler Thromb Vasc Biol 15:1652–1659PubMedGoogle Scholar
  34. 34.
    Jeremy JY, Rowe D, Emsley AM, Newby AC (1999) Nitric oxide and the proliferation of vascular smooth muscle cells. Cardiovasc Res 43:580–594CrossRefPubMedGoogle Scholar
  35. 35.
    Dubey RK, Jackson EK, Luscher TF (1995) Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell. Role of cyclic-nucleotides and angiotensin 1 receptors. J Clin Invest 96:141–149CrossRefPubMedGoogle Scholar
  36. 36.
    Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323:22–27PubMedGoogle Scholar
  37. 37.
    Cardillo C, Kilcoyne CM, Cannon RO 3rd, Panza JA (1998) Impairment of the nitric oxide-mediated vasodilator response to mental stress in hypertensive but not in hypercholesterolemic patients. J Am Coll Cardiol 32:1207–1213CrossRefPubMedGoogle Scholar
  38. 38.
    Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA (1994) Impaired endothelium-dependent vasodilation in patients with essential hypertension: evidence that the abnormality is not at the muscarinic receptor level. J Am Coll Cardiol 23:1610–1616PubMedCrossRefGoogle Scholar
  39. 39.
    Panza JA, García CE, Kilcoyne CM et al (1995) Impaired endothelium-dependent vasodilation in patients with essential hypertension. Evidence that nitric oxide abnormality is not localized to a single signal transduction pathway. Circulation 91:1732–1738PubMedGoogle Scholar
  40. 40.
    Creager MA, Roddy MA (1994) Effect of captopril and enalapril on endothelial function in hypertensive patients. Hypertension 24:499–505PubMedGoogle Scholar
  41. 41.
    Wallace SM, Yasmin A, McEniery CM et al (2007) Isolated systolic hypertension is characterized by increased aortic stiffness and endothelial dysfunction. Hypertension 50:228–233CrossRefPubMedGoogle Scholar
  42. 42.
    Scuteri A, Brancati AM, Gianni W et al (2005) Arterial stiffness is an independent risk factor for cognitive impairment in the elderly: a pilot study. J Hypertens 23:1211–1216CrossRefPubMedGoogle Scholar
  43. 43.
    Scuteri A, Tesauro M, Appolloni S, Preziosi F, Brancati AM, Volpe M (2007) Arterial stiffness as an independent predictor of longitudinal changes in cognitive function in the older individual. J Hypertens 25:1035–1040CrossRefPubMedGoogle Scholar
  44. 44.
    Taddei S, Virdis A, Mattei P, Salvetti A (1993) Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension 21:929–933PubMedGoogle Scholar
  45. 45.
    Higashi Y, Sasaki S, Nakagawa K et al (2002) Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 346:1954–1962CrossRefPubMedGoogle Scholar
  46. 46.
    Taddei S, Virdis A, Mattei P et al (1995) Aging and endothelial function in normotensive subjects and patients with essential hypertension. Circulation 91:1981–1987PubMedGoogle Scholar
  47. 47.
    Ghiadoni L, Huang Y, Magagna A et al (2001) Effect of acute blood pressure reduction on endothelial function in the brachial artery of patients with essential hypertension. J Hypertens 19:547–551CrossRefPubMedGoogle Scholar
  48. 48.
    Taddei S, Virdis A, Mattei P et al (1996) Defective l-arginine-nitric oxide pathway in offspring of essential hypertensive patients. Circulation 94:1298–1303PubMedGoogle Scholar
  49. 49.
    Rossi GP, Taddei S, Virdis A et al (2003) The T-786C and Glu298Asp polymorphisms of the endothelial nitric oxide gene affect the forearm blood flow responses of Caucasian hypertensive patients. J Am Coll Cardiol 41:938–945CrossRefPubMedGoogle Scholar
  50. 50.
    Cosentino F, Francia P, Musumeci B, De Siati L, Assunta Rao M, De Luca N, Balla C, De Sensi F, Volpe M (2006) Nitric oxide release is impaired in hypertensive individuals with familial history of stroke. Am J Hypertens 19:1213–1216Google Scholar
  51. 51.
    Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA (1993) Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation 87:1468–1474PubMedGoogle Scholar
  52. 52.
    Taddei S, Virdis A, Ghiadoni L et al (1998) Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 97:2222–2229PubMedGoogle Scholar
  53. 53.
    Platina Y, Ghiadoni L, Magagna A et al (2007) Supplementation with vitamin C and E improves arterial stiffness and endothelial function in essential hypertensive patients. Am J Hypertens 20:392–397CrossRefGoogle Scholar
  54. 54.
    Taddei S, Ghiadoni L, Virdis A et al (1999) Vasodilation to bradykinin is mediated by an ouabain-sensitive pathway as a compensatory mechanism for impaired nitric oxide availability in essential hypertensive patients. Circulation 100:1400–1405PubMedGoogle Scholar
  55. 55.
    Taddei S, Virdis A, Ghiadoni L et al (1999) Vasoconstriction to endogenous endothelin-1 is increased in the peripheral circulation of patients with essential hypertension. Circulation 100:1680–1683PubMedGoogle Scholar
  56. 56.
    Taddei S, Virdis A, Ghiadoni L et al (1997) Cyclooxygenase inhibition restores nitric oxide activity in essential hypertension. Hypertension 29:274–279PubMedGoogle Scholar
  57. 57.
    Widlansky ME, Price DT, Gokce N et al (2003) Short- and long-term COX-2 inhibition reverses endothelial dysfunction in patients with hypertension. Hypertension 42:310–315CrossRefPubMedGoogle Scholar
  58. 58.
    Ward NC, Rivera J, Hodgson J et al (2004) Urinary 20-hydroxyeicosatetraenoic acid is associated with endothelial dysfunction in humans. Circulation 110:438–443CrossRefPubMedGoogle Scholar
  59. 59.
    Elias MF, Wolf PA, D’Agostino RB, Cobb J, White LR (1993) Untreated blood pressure level is inversely related to cognitive functioning: the Framingham Study. Am J Epidemiol 138:353–364PubMedGoogle Scholar
  60. 60.
    Skoog I, Lernfelt B, Landahl S, Palmertz B, Andreasson LA, Nilsson L, Persson G, Odén A, Svanborg A (1996) 15-year longitudinal study of blood pressure and dementia. Lancet 347:1141–1145CrossRefPubMedGoogle Scholar
  61. 61.
    Glynn RJ, Beckett LA, Hebert LE, Morris MC, Scherr PA, Evans DA (1999) Current and remote blood pressure and cognitive decline. JAMA 281:438–445CrossRefPubMedGoogle Scholar
  62. 62.
    Tzourio C, Dufouil C, Ducimetière P, Alpérovitch A (1999) Cognitive decline in individuals with high blood pressure: a longitudinal study in the elderly. EVA Study Group. Epidemiology of vascular aging. Neurology 53:1948–1952PubMedGoogle Scholar
  63. 63.
    Qiu C, Winblad B, Fratiglioni L (2005) The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol 4:487–499CrossRefPubMedGoogle Scholar
  64. 64.
    Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K (2005) Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 64(2):277–281PubMedGoogle Scholar
  65. 65.
    Castri P, Iacovelli L, De Blasi A, Giubilei F, Moretti A, Capone FT, Nicoletti F, Orzi F (2007) Reduced insulin-induced phosphatidylinositol-3-kinase activation in peripheral blood mononuclear leucocytes from patients with Alzheimer’s disease. Eur J Neurosci 26:2469–2472CrossRefPubMedGoogle Scholar
  66. 66.
    Folstein MF, Folstein SE, McHugh PR, “Minimental state” (1975) A practical method for grading the cognitive state of patients for the clinician. J Psychiat Res 12:189–198CrossRefPubMedGoogle Scholar
  67. 67.
    Erkinjuntti T (2007) Vascular cognitive deterioration and stroke. Cerebrovasc Dis 24:189–194CrossRefPubMedGoogle Scholar
  68. 68.
    PROGRESS Management Committee (1996) Blood pressure lowering for the secondary prevention of stroke: rationale and design for PROGRESS. J Hypertens 14:41–46Google Scholar
  69. 69.
    Staessen JA, Fagard R, Thijs L et al (1997) Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Lancet 350:757–764CrossRefPubMedGoogle Scholar
  70. 70.
    Hansson L, Lithell H, Skoog I, Baro F, Bánki CM, Breteler M, Carbonin PU, Castaigne A, Correia M, Degaute JP, Elmfeldt D, Engedal K, Farsang C, Ferro J, Hachinski V, Hofman A, James OF, Krisin E, Leeman M, de Leeuw PW, Leys D, Lobo A, Nordby G, Olofsson B, Zanchetti A et al (1999) Study on COgnition and Prognosis in the Elderly (SCOPE). Blood Press 8:177–183CrossRefPubMedGoogle Scholar
  71. 71.
    SHEP Cooperative Research Group (1991) Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA 265:3255–3264CrossRefGoogle Scholar
  72. 72.
    Di Bari M, Pahor M, Franse LV, Shorr RI, Wan JY, Ferrucci L, Somes GW, Applegate WB (2001) Dementia and disability outcomes in large hypertension trials: lessons learned from the systolic hypertension in the elderly program (SHEP) trial. Am J Epidemiol 153:72–78CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Giuseppe Bomboi
    • 1
  • Lorenzo Castello
    • 2
  • Francesco Cosentino
    • 2
  • Franco Giubilei
    • 1
  • Francesco Orzi
    • 1
    • 4
  • Massimo Volpe
    • 2
    • 3
  1. 1.Department of Neurology, II Faculty of Medicine“Sapienza” University of RomeRome Italy
  2. 2.Department of Cardiology, II Faculty of Medicine“Sapienza” University of RomeRomeItaly
  3. 3.IRCCS NeuromedPozzilli (IS)Italy
  4. 4.Neurology Unit“Sapienza” University of RomeRomeItaly

Personalised recommendations