Neurological Sciences

, Volume 29, Supplement 1, pp 127–130

Peripheral mechanism of action of antimigraine prophylactic drugs

  • Fabio Frediani
  • Veronica Villani
  • Gerardo Casucci
Current Reality in Headache Treatments


Migraine is a visceral pain. According to current theories, activation of trigeminocervical nerve endings releases calcitonin gene-related peptide and substance P, inducing vasodilation and plasma protein extravasation, leading to ‘neurogenic’ inflammation. Activation of the trigeminovascular system is followed by sensitisation of trigeminocervical fibres, maintaining a condition of hypersensitivity to non-noxious stimuli that support persistent pain during migraine attack. Other neurotransmitters (nitric oxide, bradykinins, 5-HT, etc.) play a role in regulating this complex mechanism. In this brief review, we consider the effect of drugs that, acting on the different transmitters involving in pain perception, can stop or inhibit these pathogenetic mechanisms.


Migraine Peripheral action Prophylactic drugs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moskowitz MA (1991) The visceral organ brain: implications for the pathophysiology of vascular head pain. Neurology 41:182–186PubMedGoogle Scholar
  2. 2.
    Malick A, Burstein R (1998) Cells of origin of the trigeminohypothalamic tract in the rat. J Comp Neurol 400:125–144PubMedCrossRefGoogle Scholar
  3. 3.
    Moskowitz MA (1984) The neurobiology of vascular head pain. Ann Neurol 16:157–168PubMedCrossRefGoogle Scholar
  4. 4.
    Markovitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7:4129–4136Google Scholar
  5. 5.
    Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28:183–187PubMedCrossRefGoogle Scholar
  6. 6.
    Burstein R (2001) Deconstructing migraine headache into peripheral and central sensitization. Pain 89:107–110PubMedCrossRefGoogle Scholar
  7. 7.
    Buzzi MG, Carter WB, Shimizu T et al (1991) Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion. Neuropharmacology 30:1193–1200PubMedCrossRefGoogle Scholar
  8. 8.
    Levy D, Jakubowski M, Burstein R (2004) Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. Proc Natl Acad Sci U S A 101:4274–4279PubMedCrossRefGoogle Scholar
  9. 9.
    Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142PubMedGoogle Scholar
  10. 10.
    Headache Classification Committee of the International Headache Society (1988) Classification and diagnostic criteria for headache disorders, cranial neuralgias and facial pain. Cephalalgia 8:1–96CrossRefGoogle Scholar
  11. 11.
    Iversen HK, Olesen J, Tfelt-Hansen P (1989) Intravenous nitroglycerin as an experimental headache model. Basic characteristics. Pain 38:17–24Google Scholar
  12. 12.
    Olesen J, Iversen HK, Thomsen LL (1993) Nitric oxide supersensitivity: a possible molecular mechanism of migraine pain. Neuroreport 4:1027–1030PubMedCrossRefGoogle Scholar
  13. 13.
    Olesen J, Thomsen LL, Iversen HK (1994) Nitric oxide is a key molecule in migraine and other vascular headaches. Trends Pharmacol Sci 15:149–153PubMedCrossRefGoogle Scholar
  14. 14.
    Iversen HK, Olesen J (1996) Headache induced by a nitric oxide donor responds to sumatriptan-a human model for development of migraine drugs. Cephalalgia 16:412–418PubMedCrossRefGoogle Scholar
  15. 15.
    Read SJ, Manning P, McNeil CJ et al. (1999) Effects of sumatriptan on nitric oxide and superoxide balance during glyceryl trinitrate infusion in the rat. Implications for anti-migraine mechanism. Brain Res 847:1–8PubMedCrossRefGoogle Scholar
  16. 16.
    Withe RP, Deane C, Hindley C et al (2000) The effect of the nitric oxide donor glyceryl trinitrate on global and regional cerebral blood flow in man. J Neurol Sci 178:23–28CrossRefGoogle Scholar
  17. 17.
    Olesen J, Jansen-Olesen I (2000) Nitric oxide mechanisms in migraine. Pathol Biol 48:648–657PubMedGoogle Scholar
  18. 18.
    Olesen J, Thomsen LL, Iversen HK (1994) Nitric oxide is a key molecule in migraine and other vascular headaches. Trends Pharmacol Sci 15:149–153PubMedCrossRefGoogle Scholar
  19. 19.
    Goadsby PJ, Edvinsson L (1993) The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 33:48–56PubMedCrossRefGoogle Scholar
  20. 20.
    Brandes JL, Saper JR, Diamond M et al (2004) Topiramate for migraine prevention: a randomized controlled trial. JAMA 291:965–973PubMedCrossRefGoogle Scholar
  21. 21.
    Diener HC, Tfelt-Hansen P, Dahlof C et al (2004) Topiramate in migraine prophylaxis: results from a placebo controlled trial with propranolol as an active control. J Neurol 251:943–950PubMedCrossRefGoogle Scholar
  22. 22.
    Storer RJ, Goadsby PJ (2004) Topiramate inhibits trigeminovascular neurons in the cat. Cephalalgia 24:1049–1056PubMedCrossRefGoogle Scholar
  23. 23.
    Akerman S, Goadsby PJ (2005) Topiramate inhibits trigeminovascular activation: an intravital microscopic study. Br J Pharmacol 146:7–14PubMedCrossRefGoogle Scholar
  24. 24.
    Wei EP, Moskowitz MA, Boccalini P et al (1992) Calcitonin gene-related peptide mediates nitroglycerin and sodium nitroprusside-induced vasodilatation in feline cerebral arterioles. Circ Res 70:1313–1319PubMedGoogle Scholar
  25. 25.
    Akerman S, Williamson DJ, Kaube H et al (2002) Nitric oxide synthase inhibitors can antagonize neurogenic and calcitonin gene-related peptide induced dilation of dural meningeal vessels. Br J Pharmacol 137:62–68PubMedCrossRefGoogle Scholar
  26. 26.
    Ramadan NM, Silberstein SD, Freitag FG et al (2000) Evidence-based guidelines for migraine headache in the primary care setting: pharmacological management for the prevention of migraine. Available at
  27. 27.
    Ramadan NM, Buchanan TM (2006) New and future migraine therapy. Pharmacol Ther 112:199–212PubMedCrossRefGoogle Scholar
  28. 28.
    Montastruc JL, Senard JM (1992) Calcium channel blockers and prevention of migraine. Pathol Biol 40:381–388PubMedGoogle Scholar
  29. 29.
    Louis P (1981) A double-blind, placebo controlled prophylactic study of flunarizine in migraine. Headache 235-239Google Scholar
  30. 30.
    Peroutka SJ (1990) The pharmacology of current antimigraine drugs. Headache 5–11Google Scholar
  31. 31.
    Ayajiki K, Okamura T, Toda N (1997) Flunarizine an antimigraine agent impairs nitroxidergic nerve function in cerebral arteries. Eur J Pharmacol 329:49–53PubMedCrossRefGoogle Scholar
  32. 32.
    Geer JJ, Dooley DJ, Adams ME (1993) K(+)-stimulated Ca2+ flux into rat neocortical mini-slices is blocked by omega-Aga-IVA and the dual Na+/Ca2+ channel blockers lidoflazide and flunarizine. Neurosci Lett 158:97–100PubMedCrossRefGoogle Scholar
  33. 33.
    Silberstein SD, Goadsby PJ (2002) Migraine: preventive treatment. Cephalalgia 22:491–512PubMedCrossRefGoogle Scholar
  34. 34.
    Leão AA (1944) Spreading depression of activity in cerebral cortex. J Neurophysiol 7:359–390Google Scholar
  35. 35.
    Leão AAP (1944) Pial circulation and spreading depression of activity in the cerebral cortex. J Neurophysiol 7:391–396Google Scholar
  36. 36.
    Omote K, Iwasaki H, Kawamata M et al (1995) Effect of verapamil on spinal anesthesia with local anesthetics. Anesth Analg 80:444–448PubMedCrossRefGoogle Scholar
  37. 37.
    Akerman S, Williamson DJ, Goadsby PJ (2003) Voltage-dependent calcium channels are involved in neurogenic dural vasodilatation via a presynaptic transmitter release mechanism. Br J Pharmacol 140:558–566PubMedCrossRefGoogle Scholar
  38. 38.
    Diener HC, Brune K, Gerber WD et al (2000) Therapy of migraine attack and migraine prophylaxis. Nervenheilkunde 19:335–345Google Scholar
  39. 39.
    Ablad B, Dahlöf C (1986) Migraine and beta-blockade: modulation of sympathetic neurotransmission. Cephalalgia 6[Suppl 5]:7–13PubMedGoogle Scholar
  40. 40.
    Cleophus TJ, Zwinderman AH (2001) Beta-blockers and heart failure: meta-analysis of mortality trials. Int J Clin F Ther 39:383–387Google Scholar
  41. 41.
    Kaniecki RG (2003) Migraine prevention with carvedilol: a prospective, open-label trial. Headache 43:589Google Scholar
  42. 42.
    Jankovic J (2004) Botulinum toxin in clinical practice. J Neurol Neurosurg Psychiatry 75:951–957PubMedCrossRefGoogle Scholar
  43. 43.
    Silberstein S et al (2000) Botulinum toxin type A as a migraine preventive treatment: for the Botox Migraine Clinical Research Group. Headache 40:445–450PubMedCrossRefGoogle Scholar
  44. 44.
    Durham PL, Cady R, Cady R (2004) Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache 44:35–42PubMedCrossRefGoogle Scholar
  45. 45.
    Schrader H, Stovner LJ, Helde G et al (2001) Prophylactic treatment of migraine with angiotensin converting enzyme inhibitor (lisinopril): randomized, placebo-controlled, cross-over study. BMJ 322:19–22PubMedCrossRefGoogle Scholar
  46. 46.
    Medeiros FL, Medeiros PL, Valença MM, Dodick D (2007) Simvastatin for migraine prevention. Headache 47:855–856PubMedCrossRefGoogle Scholar
  47. 47.
    Buzzi MG, Sakas DE, Moskowitz MA (1989) Indomethacin and acetylsalicyclic acid block neurogenic plasma proteins extravasion in rat dura mater. Eur J Pharmacol 165:251–258PubMedCrossRefGoogle Scholar
  48. 48.
    Olesen J, Thomsen LL, Iversen H (1994) Nitric oxide is a key molecule in migraine and other vascular headaches. Trends Pharmacol Sci 15:149–153PubMedCrossRefGoogle Scholar
  49. 49.
    Diener HC, Hartung E, Chrubasik J et al (2001) A comparative study of oral acetylsalicyclic acid and metoprolol for the prophylactic treatment of migraine. A randomized, controlled, double-blind, parallel group phase III study. Cephalalgia 21:120–128PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2008

Authors and Affiliations

  • Fabio Frediani
    • 1
  • Veronica Villani
    • 2
  • Gerardo Casucci
    • 3
  1. 1.Neurological Department and Headache CenterPoliclinico “S. Pietro”Ponte San Pietro (BG)Italy
  2. 2.Neurology UnitS. Andrea Hospital “La Sapienza” UniversityRomeItaly
  3. 3.Casa di Cura S. FrancescoTelese Terme (BN)Italy

Personalised recommendations