Skip to main content
Log in

An information-theory approach to geometry for animal groups

  • Original paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

One of the hardest problems in studying animal behaviour is to quantify patterns of social interaction at the group level. Recent technological developments in global positioning system (GPS) devices have opened up new avenues for locating animals with unprecedented spatial and temporal resolution. Likewise, advances in computing power have enabled new levels of data analyses with complex mathematical models to address unresolved problems in animal behaviour, such as the nature of group geometry and the impact of group-level interactions on individuals. Here, we present an information theory-based tool for the analysis of group behaviour. We illustrate its affordances with GPS data collected from a freely interacting pack of 15 Siberian huskies (Canis lupus familiaris). We found that individual freedom in movement decisions was limited to about 4%, while a subject’s location could be predicted with 96% median accuracy by the locations of other group members. Dominant individuals were less affected by other individuals’ locations than subordinate ones, and same-sex individuals influenced each other more strongly than opposite-sex individuals. We also found that kinship relationships increased the mutual dependencies of individuals. Moreover, the network stability of the pack deteriorated with an upcoming feeding event. Together, we conclude that information theory-based approaches, coupled with state-of-the-art bio-logging technology, provide a powerful tool for future studies of animal social interactions beyond the dyadic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ákos Z, Beck R, Nagy M, Vicsek T, Kubinyi E (2014) Leadership and path characteristics during walks are linked to dominance order and individual traits in dogs. PLoS Comput Biol 10(1):e1003446

    Article  PubMed  PubMed Central  Google Scholar 

  • Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49(3–4):227–266

    Article  CAS  Google Scholar 

  • Azzi A, Evans JA, Leise T, Myung J, Takumi T, Davidson AJ, Brown SA (2017) Network dynamics mediate circadian clock plasticity. Neuron 93(2):441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bialek W, Cavagna A, Giardina I, Mora T, Silvestri E, Viale M, Walczak AM (2012) Statistical mechanics for natural flocks of birds. Proc Natl Acad Sci 109(13):4786–4791

    Article  CAS  PubMed  Google Scholar 

  • Bonanni R, Cafazzo S (2014) The social organisation of a population of free-ranging dogs in a suburban area of rome: a reassessment of the effects of domestication on dogs’ behaviour. In: The social dog, Elsevier, pp 65–104

  • Branson K, Robie AA, Bender J, Perona P, Dickinson MH (2009) High-throughput ethomics in large groups of drosophila. Nature Methods 6(6):451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cafazzo S, Valsecchi P, Bonanni R, Natoli E (2010) Dominance in relation to age, sex, and competitive contexts in a group of free-ranging domestic dogs. Behavioral Ecol 21(3):443–455

    Article  Google Scholar 

  • Cafazzo S, Bonanni R, Valsecchi P, Natoli E (2014) Social variables affecting mate preferences, copulation and reproductive outcome in a pack of free-ranging dogs. PLoS One 9(6):e98594

    Article  PubMed  PubMed Central  Google Scholar 

  • Cafazzo S, Lazzaroni M, Marshall-Pescini S (2016) Dominance relationships in a family pack of captive arctic wolves (Canis lupus arctos): the influence of competition for food, age and sex. Peer J 4:e2707

    Article  PubMed  Google Scholar 

  • Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218(1):1–11

    Article  PubMed  Google Scholar 

  • Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433(7025):513

    Article  CAS  Google Scholar 

  • Dahl CD, Wyss C, Zuberbühler K, Bachmann I (2018) Social information in equine movement gestalts. Anim Cogn 21(4):583–594

    Article  PubMed  Google Scholar 

  • Dankert H, Wang L, Hoopfer ED, Anderson DJ, Perona P (2009) Automated monitoring and analysis of social behavior in drosophila. Nature Methods 6(4):297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Chaumont F, Coura RDS, Serreau P, Cressant A, Chabout J, Granon S, Olivo-Marin JC (2012) Computerized video analysis of social interactions in mice. Nature Methods 9(4):410

    Article  PubMed  Google Scholar 

  • Dell AI, Bender JA, Branson K, Couzin ID, de Polavieja GG, Noldus LP, Pérez-Escudero A, Perona P, Straw AD, Wikelski M et al (2014) Automated image-based tracking and its application in ecology. Trends Ecol Evol 29(7):417–428

    Article  PubMed  Google Scholar 

  • Ferdinandy B, Ozogány K, Vicsek T (2017) Collective motion of groups of self-propelled particles following interacting leaders. Phys A Stat Mech Appl 479:467–477

    Article  Google Scholar 

  • Fruchterman TM, Reingold EM (1991) Graph drawing by force-directed placement. Softw Pract Exp 21(11):1129–1164

    Article  Google Scholar 

  • Gadbois S (2002) The socioendocrinology of aggression-mediated stress in timber wolves (Canis lupus. Thesis. Dalhousie University, Halifax, Nova Scotia

  • Gammell MP, Vries HD, Jennings DJ, Carlin CM, Hayden TJ (2003) David’s score: a more appropriate dominance ranking method than clutton-brock et al.’s index. Anim Behav 66(3):601–605

    Article  Google Scholar 

  • Gerencsér L, Vásárhelyi G, Nagy M, Vicsek T, Miklósi A (2013) Identification of behaviour in freely moving dogs (Canis familiaris) using inertial sensors. PloS One 8(10):e77814

    Article  Google Scholar 

  • Kobourov SG (2012) Spring embedders and force directed graph drawing algorithms. arXiv preprint arXiv:12013011

  • Kubinyi E, Wallis LJ (2019) Dominance in dogs as rated by owners corresponds to ethologically valid markers of dominance. Peer J 7:e6838

    Article  PubMed  Google Scholar 

  • Kummer H (1984) From laboratory to desert and back: a social system of hamadryas baboons. Anim Behaviour 32(4):965–971

    Article  Google Scholar 

  • Langford DJ, Crager SE, Shehzad Z, Smith SB, Sotocinal SG, Levenstadt JS, Chanda ML, Levitin DJ, Mogil JS (2006) Social modulation of pain as evidence for empathy in mice. Science 312(5782):1967–1970

    Article  CAS  PubMed  Google Scholar 

  • Lukeman R, Li YX, Edelstein-Keshet L (2010) Inferring individual rules from collective behavior. Proc Natl Acad Sci 107(28):12576–12580

    Article  CAS  PubMed  Google Scholar 

  • Marshall-Pescini S, Cafazzo S, Viranyi Z, Range F (2017) Integrating social ecology in explanations of wolf-dog behavioral differences. Curr Opin Behav Sci 16:80–86

    Article  Google Scholar 

  • Mech LD (1999) Alpha status, dominance, and division of labor in wolf packs. Can J Zool 77(8):1196–1203

    Article  Google Scholar 

  • Nagy M, Akos Z, Biro D, Vicsek T (2010) Hierarchical group dynamics in pigeon flocks. Nature 464(7290):890

    Article  CAS  PubMed  Google Scholar 

  • Packard JM (2003) Wolf behaviour: reproductive, social and intelligent. Wolves Behavior Ecol Conserv 2003:35–65

    Google Scholar 

  • Peterson RO, Jacobs AK, Drummer TD, Mech LD, Smith DW (2002) Leadership behavior in relation to dominance and reproductive status in gray wolves, Canis lupus. Can J Zool 80(8):1405–1412

    Article  Google Scholar 

  • Pfungst O (1911) Clever Hans:(the horse of Mr. Von Osten.) a contribution to experimental animal and human psychology. Holt, Rinehart and Winston

  • Rasch MJ, Shi A, Ji Z (2016) Closing the loop: tracking and perturbing behaviour of individuals in a group in real-time. bioRxiv p 071308

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  Google Scholar 

  • Shemesh Y, Sztainberg Y, Forkosh O, Shlapobersky T, Chen A, Schneidman E (2013) High-order social interactions in groups of mice. Elife 2:e00759

    Article  PubMed  PubMed Central  Google Scholar 

  • Snowdon CT (1983) Ethology, comparative psychology, and animal behavior. Annu Rev Psychol 34(1):63–94

    Article  Google Scholar 

  • Städele V, Pines M, Swedell L, Vigilant L (2016) The ties that bind: maternal kin bias in a multilevel primate society despite natal dispersal by both sexes. Am J Primatol 78(7):731–744

    Article  PubMed  Google Scholar 

  • Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC (2015) Shared decision-making drives collective movement in wild baboons. Science 348(6241):1358–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226

    Article  CAS  PubMed  Google Scholar 

  • Zuberbühler K, Wittig RM (2011) Field experiments with non-human primates: a tutorial. In: Field and laboratory methods in primatology: a practical guide, Cambridge Univ. Pr., pp 207–224

Download references

Acknowledgements

We thank ‘Les Attelages de la Roche Percée’ at ‘La Ferme de Nirveau’ in Pierrefontaine-les-Varans, 25510, France, for their support. We are grateful to the Swiss National Science Foundation for supporting this project via the Ambizione Fellowship (PZ00P3_154741) awarded to CDD. KZ has also been supported by the Swiss National Science Foundation (31003A_166458). We are also grateful to the Taipei Medical University for awarding a Startup-funding to CDD (108-6402-004-112). We thank Guillaume Dezecache and Malte J. Rasch for comments on the manuscript.

Funding

This study was funded via the Ambizione Fellowship of the Swiss National Science Foundation (SNSF) (PZ00P3_154741) and the Startup-funding of Taipei Medical University (108-6402-004-112) awarded to CDD as well as by project funding of the Swiss National Science Foundation (31003A_166458) awarded to KZ.

Author information

Authors and Affiliations

Authors

Contributions

CDD: study design, data collection, analysis and interpretation, writing article, provision of necessary tools; EF: data collection, provision of resources; KZ: provision of necessary tools and resources, writing article.

Corresponding author

Correspondence to Christoph D. Dahl.

Ethics declarations

Ethical approval

According to the local authorities (Comité d’Ethique de l’Expérimentation Animale Grand Campus Dijon, Université de Bourgogne, Maison de l’Université, Esplanade Erasme, 21078 Dijon, France), non-invasive studies on dogs are allowed to be conducted without any special permission in France. ‘Les Attelages de la Roche Percée’ at ‘La Ferme de Nirveau’ in 25510 Pierrefontaine-les-Varans, France, responded to our enquiry and volunteered to participate in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahl, C.D., Ferrando, E. & Zuberbühler, K. An information-theory approach to geometry for animal groups. Anim Cogn 23, 807–817 (2020). https://doi.org/10.1007/s10071-020-01374-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-020-01374-3

Keywords

Navigation