Animal Cognition

, Volume 20, Issue 3, pp 537–551 | Cite as

Damage-induced alarm cues influence lateralized behaviour but not the relationship between behavioural and habenular asymmetry in convict cichlids (Amatitlania nigrofasciata)

  • Michele K. MoscickiEmail author
  • Peter L. Hurd
Original Paper


Cerebral lateralization, the partitioning of functions into a certain hemisphere of the brain, is ubiquitous among vertebrates. Evidence suggests that the cognitive processing of a stimulus is performed with a specific hemisphere depending in part upon the emotional valence of the stimulus (i.e. whether it is appetitive or aversive). Recent work has implicated a predominance of right-hemisphere processing for aversive stimuli. In fish with laterally placed eyes, the preference to view an object with a specific eye has been used as a proxy for assessing cerebral lateralization. The habenula, one of the most well-known examples of an asymmetrical neural structure, has been linked to behavioural asymmetry in some fish species. Here, we exposed convict cichlid fish (Amatitlania nigrofasciata) to both a social and non-social lateralization task and assessed behavioural lateralization in either the presence or absence of an aversive stimulus, damage-induced alarm cues. We also assessed whether behavioural asymmetry in these tests was related to asymmetry of the habenular nuclei. We found that when alarm cues were present, fish showed increased left-eye (and by proxy, right hemisphere) preference for stimulus viewing. In addition, females, but not males, showed stronger eye preferences when alarm cues were present. We did not find a relationship between behavioural lateralization and habenular lateralization. Our results conflict with previous reports of concordance between behavioural and habenular lateralization in this fish species. However, our results do provide support for the hypothesis of increased right-hemisphere use when an organism is exposed to aversive stimuli.


Convict cichlid Stress Cognitive bias Emotional lateralization Damage-induced alarm cues Habenula 



We thank Isaac Lank for constructing each behavioural apparatus.


This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Canada Graduate Scholarship-Doctoral (CGS-D), an Alberta Ingenuity Studentship, and a Dissertation Fellowship from the University of Alberta to MKM and an NSERC Discovery Grant (Grant #: 249685) to PLH.

Compliance with ethical standards

Conflict of interest

Both authors declare that they have no conflict of interest.

Ethical approval

All protocols were approved by the University of Alberta Biological Sciences Animal Policy and Welfare Committee (Protocol Number 5441006). Animals were housed and cared for in accordance with the standards set forth by the Canadian Council on Animal Care (CCAC). All applicable national and institutional guidelines for the care and use of animals were followed.


  1. Andrew RJ, Rogers LJ (2002) The nature of lateralization in tetrapods. In: Rogers LJ, Andrew RJ (eds) Comparative vertebrate lateralization. University Press, Cambridge, pp 94–125CrossRefGoogle Scholar
  2. Anfora G, Frasnelli E, Maccagnani B, Rogers LJ, Vallortigara G (2010) Behavioural and electrophysiological lateralization in a social (Apis mellifera) but not in a non-social (Osmia cornuta) species of bee. Behav Brain Res 206:236–239. doi: 10.1016/j.bbr.2009.09.023 CrossRefPubMedGoogle Scholar
  3. Barth KA, Miklósi A, Watkins J, Bianco IH, Wilson SW, Andrew RJ (2005) fsi zebrafish show concordant reversal of laterality of viscera, neuroanatomy, and a subset of behavioral responses. Curr Biol 15:844–850. doi: 10.1016/j.cub.2005.03.047 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bisazza A, Brown C (2011) Lateralization of cognitive functions in fish. In: Brown C, Laland KN, Krause J (eds) Fish cognition and behavior, 2nd edn. Wiley-Blackwell, Cambridge, pp 300–324Google Scholar
  5. Bisazza A, Dadda M (2005) Enhanced schooling performance in lateralized fishes. Proc R Soc B Biol Sci 272:1677–1681. doi: 10.1098/rspb.2005.3145 CrossRefGoogle Scholar
  6. Bisazza A, Pignatti R, Vallortigara G (1997) Detour tests reveal task- and stimulus-specific behavioural lateralization in mosquitofish (Gambusia holbrooki). Behav Brain Res 89:237–242. doi: 10.1016/S0166-4328(97)00061-2 CrossRefPubMedGoogle Scholar
  7. Bisazza A, Facchin L, Pignatti R, Vallortigara G (1998) Lateralization of detour behaviour in poeciliid fish: the effect of species, gender and sexual motivation. Behav Brain Res 91:157–164. doi: 10.1016/S0166-4328(97)00114-9 CrossRefPubMedGoogle Scholar
  8. Bisazza A, De Santi A, Vallortigara G (1999) Laterality and cooperation: mosquitofish move closer to a predator when the companion is on their left side. Anim Behav 57:1145–1149. doi: 10.1006/anbe.1998.1075 CrossRefPubMedGoogle Scholar
  9. Bisazza A, De Santi A, Bonso S, Sovrano VA (2002) Frogs and toads in front of a mirror: lateralisation of response to social stimuli in tadpoles of five anuran species. Behav Brain Res 134:417–424. doi: 10.1016/S0166-4328(02)00055-4 CrossRefPubMedGoogle Scholar
  10. Bonati B, Csermely D, López P, Martin J (2010) Lateralization in the escape behaviour of the common wall lizard (Podarcis muralis). Behav Brain Res 207:1–6. doi: 10.1016/j.bbr.2009.09.002 CrossRefPubMedGoogle Scholar
  11. Broder ED, Angeloni LM (2014) Predator-induced phenotypic plasticity of laterality. Anim Behav 98:125–130. doi: 10.1016/j.anbehav.2014.09.033 CrossRefGoogle Scholar
  12. Brown GE, Foam PE, Cowell HE, Guevara Fiore P, Chivers DP (2004) Production of chemical alarm cues in convict cichlids: the effects of diet, body condition and ontogeny. Ann Zool Fenn 41:487–499Google Scholar
  13. Brown GE, Rive AC, Ferrari MCO, Chivers DP (2006) The dynamic nature of antipredator behavior: prey fish integrate threat-sensitive antipredator responses within background levels of predation risk. Behav Ecol Sociobiol 61:9–16. doi: 10.1007/s00265-006-0232-y CrossRefGoogle Scholar
  14. Brown C, Western J, Braithwaite VA (2007) The influence of early experience on, and inheritance of, cerebral lateralization. Anim Behav 74:231–238. doi: 10.1016/j.anbehav.2006.08.014 CrossRefGoogle Scholar
  15. Byrnes EE, Pouca CV, Brown C (2016) Laterality strength is linked to stress reactivity in Port Jackson sharks (Heterodontus portusjacksoni). Behav Brain Res 305:239–246. doi: 10.1016/j.bbr.2016.02.033 CrossRefPubMedGoogle Scholar
  16. Cantalupo C, Bisazza A, Vallortigara G (1995) Lateralization of predator-evasion response in a teleost fish (Girardinus falcatus). Neuropsychologia 33(12):1637–1646. doi: 10.1016/0028-3932(95)00043-7 CrossRefPubMedGoogle Scholar
  17. Clement TS, Parikh V, Schrumpf M, Fernald RD (2005) Behavioral coping strategies in a cichlid fish: the role of social status and acute stress response in direct and displaced aggression. Horm Behav 47:336–342. doi: 10.1016/j.yhbeh.2004.11.014 CrossRefPubMedGoogle Scholar
  18. De Santi A, Sovrano V, Bisazza A, Vallortigara G (2001) Mosquitofish display differential left- and right-eye use during mirror image scrutiny and predator inspection responses. Anim Behav 61:305–310. doi: 10.1006/anbe.2000.1566 CrossRefGoogle Scholar
  19. Dharmaretnam M, Rogers LJ (2005) Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behav Brain Res 162:62–70. doi: 10.1016/j.bbr.2005.03.012 CrossRefPubMedGoogle Scholar
  20. Domenici P, Allan B, McCormick MI, Munday PL (2012) Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol Lett 8(1):78–81. doi: 10.1098/rsbl.2011.0591 CrossRefPubMedGoogle Scholar
  21. Efron B, Tibshirani RJ (1994) Introduction to the bootstrap. Chapman and Hall, New YorkGoogle Scholar
  22. Facchin L, Bisazza A, Vallortigara G (1999) What causes lateralization of detour behavior in fish? Evidence for asymmetries in eye use. Behav Brain Res 103:229–234. doi: 10.1016/S0166-4328(99)00043-1 CrossRefPubMedGoogle Scholar
  23. Ferrari MCO, McCormick MI, Allan BJM, Choi RB, Ramasamy RA, Chivers DP (2015) The effects of background risk on behavioural lateralization in a coral reef fish. Funct Ecol 29:1553–1559. doi: 10.1111/1365-2435.12483 CrossRefGoogle Scholar
  24. Freire R, van Dort S, Rogers LJ (2006) Pre- and post-hatching effects of corticosterone treatment on behavior of the domestic chick. Horm Behav 49:157–165. doi: 10.1016/j.yhbeh.2005.05.015 CrossRefPubMedGoogle Scholar
  25. Gainotti G (1972) Emotional behavior and hemispheric side of lesion. Cortex 8:41–55CrossRefPubMedGoogle Scholar
  26. Gainotti G (2012) Unconscious processing of emotions and the right hemisphere. Neuropsychologia 50:205–218. doi: 10.1016/j.neuropsychologia.2011.12.005 CrossRefPubMedGoogle Scholar
  27. Gandolfi G, Mainardi D, Rossi AC (1968) The fright reaction of zebra fish. Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 107:74–88. doi: 10.1007/BF00042916 Google Scholar
  28. Ghirlanda S, Vallortigara G (2004) The evolution of brain lateralization: a game-theoretical analysis of population structure. Proc R Soc B Biol Sci 271:853–857. doi: 10.1098/rspb.2003.2669 CrossRefGoogle Scholar
  29. Ghirlanda S, Fransnelli E, Vallortigara G (2009) Intraspecific competition and coordination in the evolution of lateralization. Philos Trans R Soc B 364:861–866. doi: 10.1098/rstb.2008.0227 CrossRefGoogle Scholar
  30. Gordon DJ, Rogers LJ (2010) Differences in social and vocal behavior between left- and right-handed common marmosets. J Comp Psychol 124:402–411. doi: 10.1037/a0019736 CrossRefPubMedGoogle Scholar
  31. Gordon DJ, Rogers LJ (2015) Cognitive bias, hand preference and welfare of common marmosets. Behav Brain Res 287:100–108. doi: 10.1016/j.bbr.2015.03.037 CrossRefPubMedGoogle Scholar
  32. Gutiérrez-Ibáñez C, Reddon AR, Kreuzer MB, Wylie DR, Hurd PL (2011) Variation in the asymmetry of the habenular nucleus correlates with behavioural asymmetry in a cichlid fish. Behav Brain Res 221:189–196. doi: 10.1016/j.bbr.2011.03.001 CrossRefPubMedGoogle Scholar
  33. Harding EJ, Paul ES, Mendl M (2004) Animal behaviour: cognitive bias and affective state. Nature 427:312. doi: 10.1038/427312a CrossRefPubMedGoogle Scholar
  34. Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11:503–513. doi: 10.1038/nrn2866 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Irving PW (1996) Sexual dimorphism in club cell distribution in the European minnow and immunocompetence signalling. J Fish Biol 48:80–88. doi: 10.1111/j.1095-8649.1996.tb01420.x Google Scholar
  36. Itzkowitz M, Santangelo N, Richter M (2001) Parental division of labour and the shift from minimal to maximal role specializations: an examination using a biparental fish. Anim Behav 61:237–245. doi: 10.1006/anbe.2000.1724 CrossRefGoogle Scholar
  37. Itzkowitz M, Santangelo N, Richter M (2003) How does a parent respond when its mate emphasizes the wrong role? A test using a monogamous fish. Anim Behav 66:863–869. doi: 10.1006/anbe.2002.2291 CrossRefGoogle Scholar
  38. JASP Team (2016) JASP (Version [Computer software]Google Scholar
  39. Kaarthigeyan J, Dharmaretnam M (2005) Relative levels of motivation and asymmetries of viewing and detour task in guppies (Poecilia reticulata). Behav Brain Res 159:37–41. doi: 10.1016/j.bbr.2004.09.024 CrossRefPubMedGoogle Scholar
  40. Kalin NH, Larson C, Shelton SE, Davidson RJ (1998) Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behav Neurosci 112:286–292. doi: 10.1037/0735-7044.112.2.286 CrossRefPubMedGoogle Scholar
  41. Keller-Costa T, Canário AVM, Hubbard PC (2015) Chemical communication in cichlids: a mini-review. Gen Comp Endocr 221:64–74. doi: 10.1016/j.ygcen.2015.01.001 CrossRefPubMedGoogle Scholar
  42. Koolhaas JM, de Boer SF, Coppens CM, Buwalda B (2010) Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrin 31:307–321. doi: 10.1016/j.yfrne.2010.04.001 CrossRefGoogle Scholar
  43. Leliveld LMC, Langbein J, Puppe B (2013) The emergence of emotional lateralization: evidence in non-human vertebrates and implications for farm animals. Appl Anim Behav Sci 145:1–14. doi: 10.1016/j.applanim.2013.02.002 CrossRefGoogle Scholar
  44. Lippolis G, Bisazza A, Rogers LJ, Vallortigara G (2002) Lateralization of predator avoidance responses in three species of toads. Laterality 7:163–183. doi: 10.1080/13576500143000221 PubMedGoogle Scholar
  45. Lippolis G, Joss JMP, Rogers LJ (2009) Australian lungfish (Neoceratodus forsteri): a missing link in the evolution of complimentary side biases for predator avoidance and prey capture. Brain Behav Evolut 73:295–303. doi: 10.1159/000230674 CrossRefGoogle Scholar
  46. Lucon-Xiccato T, Nati JJ, Blasco FR, Johansen JL, Steffensen JF, Domenici P (2014) Severe hypoxia impairs lateralization in a marine teleost fish. J Exp Biol 217(23):4115–4118. doi: 10.1242/jeb.111229 CrossRefPubMedGoogle Scholar
  47. Lucon-Xiccato T, Chivers DP, Mitchell MD, Ferrari MCO (2016) Prenatal exposure to predation affects predator recognition learning via lateralization plasticity. Behav Ecol. doi: 10.1093/beheco/arw155 Google Scholar
  48. MacNeilage PF, Rogers LJ, Vallortigara G (2009) Origins of the left and right brain. Sci Am 301:60–67. doi: 10.1038/scientificamerican0709-60 CrossRefPubMedGoogle Scholar
  49. Matsumoto M, Hikosaka O (2009) Representation of negative motivational value in the primate lateral habenula. Nat Neurosci 12:77–84. doi: 10.1038/nn.2233 CrossRefPubMedGoogle Scholar
  50. Miklosi A, Andrew RJ (1999) Right eye use associated with decision to bite in zebrafish. Behav Brain Res 105:199–205. doi: 10.1016/S0166-4328(99)00071-6 CrossRefPubMedGoogle Scholar
  51. Moscicki MK, Hurd PL (2015) Sex, boldness and stress experience affect convict cichlid, Amatitlania nigrofasciata, open field behaviour. Anim Behav 107:105–114. doi: 10.1016/j.anbehav.2015.05.027 CrossRefGoogle Scholar
  52. Moscicki MK, Reddon AR, Hurd PL (2011) Lateralized behaviour of a non-social cichlid fish (Amatitlania nigrofasciata) in a social and a non-social environment. Behav Process 88:27–32. doi: 10.1016/j.beproc.2011.07.004 CrossRefGoogle Scholar
  53. Noakes DLG (1991) Ontogeny of behaviour in cichlids. In: Keenleyside MHA (ed) Cichlid fishes: behaviour, ecology and evolution. Chapman and Hall, London, pp 209–224Google Scholar
  54. Ocklenburg S, Korte SM, Peterburs J, Wolf OT, Güntürkün O (2016) Stress and laterality—the comparative perspective. Physiol Behav 164:321–329. doi: 10.1016/j.physbeh.2016.06.020 CrossRefPubMedGoogle Scholar
  55. Øverli O, Korzan WJ, Hoglund E, Winberg S, Bollig H, Watt M, Forster GL, Øverli E, Renner KJ, Summers CH (2004) Stress coping style predicts aggression and social dominance in rainbow trout. Horm Behav 45:235–241. doi: 10.1016/j.yhbeh.2003.12.002 CrossRefPubMedGoogle Scholar
  56. Perria L, Rosadini G, Rossi GF (1961) Determination of side of cerebral dominance with amobarbital. Arch Neurol Chic 4:173–181. doi: 10.1001/archneur.1961.00450080055006 CrossRefGoogle Scholar
  57. Pollock MS, Zhao X, Brown GE, Kusch RC, Pollock R, Chivers DP (2005) The response of convict cichlids to chemical alarm cues: an integrated study of behaviour, growth and reproduction. Ann Zool Fenn 42:485–495Google Scholar
  58. R Core Development Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  59. Reddon AR, Balshone S (2010) Lateralization in response to social stimuli in a cooperatively breeding cichlid fish. Behav Process 85:68–71. doi: 10.1016/j.beproc.2010.06.008 CrossRefGoogle Scholar
  60. Reddon AR, Hurd PL (2008) Aggression, sex and individual differences in cerebrallateralization in a cichlid fish. Biol Lett 4(4):338–340. doi: 10.1098/rsbl.2008.0206 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Reddon AR, Hurd PL (2009a) Sex differences in the cerebral lateralization of a cichlid fish when detouring to view emotionally conditioned stimuli. Behav Process 82:25–29. doi: 10.1016/j.beproc.2009.03.005 CrossRefGoogle Scholar
  62. Reddon AR, Hurd PL (2009b) Individual differences in cerebral lateralization are associated with shy-bold variation in the convict cichlid. Anim Behav 77:189–193. doi: 10.1016/j.anbehav.2008.09.026 CrossRefGoogle Scholar
  63. Reddon AR, Gutiérrez-Ibáñez C, Wylie DR, Hurd PL (2009) The relationship between growth, brain asymmetry and behavioural lateralization in a cichlid fish. Behav Brain Res 201:223–228. doi: 10.1016/j.bbr.2009.02.015 CrossRefPubMedGoogle Scholar
  64. Rogers LJ (1989) Laterality in animals. Int J Comp Psychol 3:5–25Google Scholar
  65. Rogers LJ (2000) Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang 73:236–253. doi: 10.1006/brln.2000.2305 CrossRefPubMedGoogle Scholar
  66. Rogers LJ (2009) Hand and paw preferences in relation to the lateralized brain. Philos Trans R Soc B 364:943–954. doi: 10.1098/rstb.2008.0225 CrossRefGoogle Scholar
  67. Rogers LJ (2010) Relevance of brain and behavioural lateralization to animal welfare. Appl Anim Behav Sci 127:1–11. doi: 10.1016/j.applanim.2010.06.008 CrossRefGoogle Scholar
  68. Rogers LJ, Andrew RJ (2002) Comparative vertebrate lateralization. University Press, CambridgeCrossRefGoogle Scholar
  69. Roh E, Mirza RS, Brown GE (2004) Quality or quantity? The role of donor condition in the production of chemical alarm cues in juvenile convict cichlids. Behaviour 141:1235–1248. doi: 10.1163/1568539042729667 CrossRefGoogle Scholar
  70. Ross ED, Homan RW, Buck R (1994) Differential hemispheric lateralization of primary and social emotions—implications for developing a comprehensive neurology for emotions, repression, and the subconscious. Neuropsychiatry Neuropsychol Behav Neurol 7:1–19Google Scholar
  71. Ruxton GD (2006) The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behav Ecol 17:688–690. doi: 10.1093/beheco/ark016 CrossRefGoogle Scholar
  72. Siegel DG (2007) Cheese Webcam Booth (version 2.30.1) [Computer software]. Accessed 18 April 2012
  73. Siniscalchi M, Quaranta A, Rogers LJ (2008) Hemispheric specialization in dogs for processing different acoustic stimuli. PLoS ONE 3:e3349. doi: 10.1371/journal.pone.0003349 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Smith RJF (1986) Reduced alarm substance cell counts in male and androgen treated zebra danios (Brachydanio rerio). Can J Zoolog 64:551–553. doi: 10.1139/z86-080 CrossRefGoogle Scholar
  75. Smith RJF (1992) Alarm signals in fishes. Rev Fish Biol Fish 2:33–63. doi: 10.1007/BF00042916 CrossRefGoogle Scholar
  76. Snekser JL, Itzkowitz M (2009) Sex differences in retrieval behavior by the biparental convict cichlid. Ethology 115:457–464. doi: 10.1111/j.1439-0310.2009.01625.x CrossRefGoogle Scholar
  77. Sovrano VA, Andrew RJ (2006) Eye use during viewing a reflection: behavioural lateralisation in zebrafish larvae. Behav Brain Res 167:226–231. doi: 10.1016/j.bbr.2005.09.021 CrossRefPubMedGoogle Scholar
  78. Sovrano VA, Rainoldi C, Bisazza A, Vallortigara G (1999) Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish. Behav Brain Res 106:175–180. doi: 10.1016/S0166-4328(99)00105-9 CrossRefGoogle Scholar
  79. Sovrano VA, Bisazza A, Vallortigara G (2001) Lateralization of response to social stimuli in fishes: a comparison between different methods and species. Physiol Behav 74:237–244. doi: 10.1016/S0031-9384(01)00552-2 CrossRefPubMedGoogle Scholar
  80. Sutherland RJ (1982) The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev 6:1–13. doi: 10.1016/0149-7634(82)90003-3 CrossRefPubMedGoogle Scholar
  81. Vallortigara G (1992) Right hemisphere advantage for social recognition in the chick. Neuropsychologia 30:761–768. doi: 10.1016/0028-3932(92)90080-6 CrossRefPubMedGoogle Scholar
  82. Vallortigara G (2000) Comparative neuropsychology of the dual brain: a stroll through animals’ left and right perceptual worlds. Brain Lang 73:189–219. doi: 10.1006/brln.2000.2303 CrossRefPubMedGoogle Scholar
  83. Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav Brain Res 28:575–633. doi: 10.1017/S0140525X05000105 Google Scholar
  84. Vallortigara G, Rogers LJ, Bisazza A (1999) Possible evolutionary origins of cognitive brain lateralization. Brain Res Rev 30:164–175. doi: 10.1016/S0165-0173(99)00012-0 CrossRefPubMedGoogle Scholar
  85. Vallortigara G, Chiandetti C, Sovrano VA (2010) Brain asymmetry (animal). WIREs Cogn Sci 2:146–157. doi: 10.1002/wcs.100 CrossRefGoogle Scholar
  86. Vavrek MA, Brown GE (2009) Threat-sensitive responses to disturbance cues in juvenile convict cichlids and rainbow trout. Ann Zool Fenn 46:171–180CrossRefGoogle Scholar
  87. Wahlsten D (1990) Insensitivity of the analysis of variance to heredity–environment interaction. Behav Brain Sci 13:109–161. doi: 10.1017/S0140525X00077797 CrossRefGoogle Scholar
  88. Wahlsten D (1991) Sample size to detect a planned contrast and a one degree-of-freedom interaction effect. Psychol Bull 110:587–595. doi: 10.1037/0033-2909.110.3.587 CrossRefGoogle Scholar
  89. Wahlsten D (1999) Experimental design and statistical inference. In: Crusio WE, Gerlai RT (eds) Handbook of molecular-genetic-techniques for brain and behavior research. Elsevier, Amsterdam, pp 40–57CrossRefGoogle Scholar
  90. Wahlsten D (2000) Analysis of variance in the service of interactionism. Hum Dev 43:46–50. doi: 10.1159/000022655 CrossRefGoogle Scholar
  91. Wisenden BD, Sargent RC (1997) Antipredator behavior and suppressed aggression by convict cichlids in response to injury-released chemical cues of conspecifics but not to those of an allopatric heterospecific. Ethology 103:283–291. doi: 10.1111/j.1439-0310.1997.tb00018.x CrossRefGoogle Scholar
  92. Wittling W, Pfluger M (1990) Neuroendocrine hemisphere asymmetries: salivary cortisol secretion during lateralized viewing of emotion-related and neutral films. Brain Cognit 14:243–265. doi: 10.1016/0278-2626(90)90032-J CrossRefGoogle Scholar
  93. Wittling W, Block A, Schweiger E, Genzel S (1998) Hemisphere asymmetry in sympathetic control of the human myocardium. Brain Cognit 38:17–35. doi: 10.1006/brcg.1998.1000 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of AlbertaEdmontonCanada
  2. 2.Centre for NeuroscienceUniversity of AlbertaEdmontonCanada

Personalised recommendations