Animal Cognition

, Volume 20, Issue 2, pp 347–357 | Cite as

Global/local processing of hierarchical visual stimuli in a conflict–choice task by capuchin monkeys (Sapajus spp.)

  • Valentina Truppa
  • Paola Carducci
  • Diego Antonio De Simone
  • Angelo Bisazza
  • Carlo De Lillo
Original Paper

Abstract

In the last two decades, comparative research has addressed the issue of how the global and local levels of structure of visual stimuli are processed by different species, using Navon-type hierarchical figures, i.e. smaller local elements that form larger global configurations. Determining whether or not the variety of procedures adopted to test different species with hierarchical figures are equivalent is of crucial importance to ensure comparability of results. Among non-human species, global/local processing has been extensively studied in tufted capuchin monkeys using matching-to-sample tasks with hierarchical patterns. Local dominance has emerged consistently in these New World primates. In the present study, we assessed capuchins’ processing of hierarchical stimuli with a method frequently adopted in studies of global/local processing in non-primate species: the conflict–choice task. Different from the matching-to-sample procedure, this task involved processing local and global information retained in long-term memory. Capuchins were trained to discriminate between consistent hierarchical stimuli (similar global and local shape) and then tested with inconsistent hierarchical stimuli (different global and local shapes). We found that capuchins preferred the hierarchical stimuli featuring the correct local elements rather than those with the correct global configuration. This finding confirms that capuchins’ local dominance, typically observed using matching-to-sample procedures, is also expressed as a local preference in the conflict–choice task. Our study adds to the growing body of comparative studies on visual grouping functions by demonstrating that the methods most frequently used in the literature on global/local processing produce analogous results irrespective of extent of the involvement of memory processes.

Keywords

Visual perception Global/local processing Hierarchical stimuli Long-term memory New World monkeys 

Notes

Acknowledgements

We thank two anonymous reviewers for their thoughtful suggestions and constructive comments on the manuscript. We are also grateful to Tyrone Lucon Xiccato for his helpful statistical suggestions. We wish to thank Cinzia Trapanese, Francesca Cosentino and Adrian Soldati for help with data collection. We acknowledge Arianna Manciocco, Massimiliano Bianchi and Simone Catarinacci for help with animal management and for technical help with the apparatus. We also thank the Comune di Roma-Museo Civico Zoologia and the Fondazione Bioparco for hosting the Unit of Cognitive Primatology and the Primate Center.

Compliance with ethical standards

Ethical approval

The research protocol for this study was approved by the Italian Health Ministry (Central Direction for the Veterinary Service, approvals n. 11/2011-C and n. DM132/2014-C to V. Truppa). All procedures were in accordance with the ethical standards of National Research Council of Italy, where the study was conducted.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Addessi E, Crescimbene L, Visalberghi E (2008) Food and token quantity discrimination in capuchin monkeys (Cebus apella). Anim Cognit 11:275–282. doi:10.1007/s10071-007-0111-6 CrossRefGoogle Scholar
  2. Avarguès-Weber A, Dyer AG, Ferrah N, Giurfa M (2015) The forest or the trees: preference for global over local image processing is reversed by prior experience in honeybees. Proc R Soc B 282:20142384. doi:10.1098/rspb.2014.2384 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cavoto KK, Cook RG (2001) Cognitive precedence for local information in hierarchical stimulus processing by pigeons. J Exp Psychol Anim Behav Process 27:3–16. doi:10.1037/0097-7403.27.1.3 CrossRefPubMedGoogle Scholar
  4. Chiandetti C, Pecchia T, Patt F, Vallortigara G (2014) Visual hierarchical processing and lateralization of cognitive functions through domestic chicks’ eyes. PLoS ONE 9(1):e84435. doi:10.1371/journal.pone.0084435 CrossRefPubMedPubMedCentralGoogle Scholar
  5. De Lillo C, Spinozzi G, Palumbo M, Giustino G (2011) Attention allocation modulates the processing of hierarchical visual patterns: a comparative analysis of capuchin monkeys (Cebus apella) and humans. J Exp Psychol Anim Behav Process 37:341–352. doi:10.1037/a0022989 CrossRefPubMedGoogle Scholar
  6. De Lillo C, Palumbo M, Spinozzi G, Giustino G (2012) Effects of pattern redundancy and hierarchical grouping on global-local visual processing in monkeys (Cebus apella) and humans (Homo sapiens). Behav Brain Res 226:445–455. doi:10.1016/j.bbr.2011.09.040 CrossRefPubMedGoogle Scholar
  7. Deruelle C, Fagot J (1998) Visual search for global/local stimulus features in humans and baboons. Psychon Bull Rev 5:476–481. doi:10.3758/BF03208825 CrossRefGoogle Scholar
  8. Dienes Z (2014) Using Bayes to get the most out of non-significant results. Front Psychol 5:781. doi:10.3389/fpsyg.2014.00781 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fagot J, Deruelle C (1997) Processing of global and local visual information and hemispheric specialization in humans (Homo sapiens) and baboons (Papio papio). J Exp Psychol Hum Percept Perform 23:429–442. doi:10.1037/0096-1523.23.2.429 CrossRefPubMedGoogle Scholar
  10. Fagot J, Tomonaga M (1999) Comparative assessment of global-local processing in humans (Homo sapiens) and chimpanzees (Pan troglodytes): use of a visual search task with compound stimuli. J Comp Psychol 113:3–12. doi:10.1037/0735-7036.113.1.3 CrossRefGoogle Scholar
  11. Fremouw T, Herbranson WT, Shimp CP (1998) Priming of attention to global and local levels of visual analysis. J Exp Psychol Anim Behav Process 24:278–290. doi:10.1037/0097-7403.24.3.278 CrossRefPubMedGoogle Scholar
  12. Fremouw T, Herbranson WT, Shimp CP (2002) Dynamic shifts of pigeon local/global attention. Anim Cognit 5:233–243. doi:10.1007/s10071-002-0152-9 CrossRefGoogle Scholar
  13. Goto K, Wills AJ, Lea SEG (2004) Global-feature classification can be acquired more rapidly than local-feature classification in both humans and pigeons. Anim Cognit 7:109–113. doi:10.1007/s10071-003-0193-8 CrossRefGoogle Scholar
  14. Hopkins WD, Washburn D (2002) Matching visual stimuli on the basis of global and local features by chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). Anim Cognit 5:27–31. doi:10.1007/s10071-001-0121-8 CrossRefGoogle Scholar
  15. Kimchi R (1992) Primacy of wholistic processing and global/local paradigm: a critical review. Psychol Bull 112:24–38. doi:10.1037/0033-2909.112.1.24 CrossRefPubMedGoogle Scholar
  16. Kimchi R (1998) Uniform connectedness and grouping in the perceptual organization of hierarchical patterns. J Exp Psychol Hum Percept Perform 24:1105–1118. doi:10.1037/0096-1523.24.4.1105 CrossRefPubMedGoogle Scholar
  17. Kimchi R, Palmer SE (1982) Form and texture in hierarchically constructed patterns. J Exp Psychol Hum Percept Perform 8:521–535. doi:10.1037/0096-1523.8.4.521 CrossRefPubMedGoogle Scholar
  18. Kinchla RA, Wolfe JM (1979) The order of visual processing: “top down”, “bottom-up” or “middle out”. Percept Psychophys 25:225–331. doi:10.3758/BF03202991 CrossRefPubMedGoogle Scholar
  19. Koldewyn K, Jiang YV, Weigelt S, Kanwisher N (2013) Global/local processing in autism: not a disability, but a disinclination. J Autism Dev Disord 43:2329–2340. doi:10.1007/s10803-013-1777-z CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kumaran D, Hassabis D, Spiers HJ, Vann SD, Vargha-Khadem F, Maguire EA (2007) Impaired spatial and non-spatial configural learning in patients with hippocampal pathology. Neuropsychologia 45:2699–2711. doi:10.1016/j.neuropsychologia.2007.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lamb MR, Robertson LC, Knight RT (1990) Component mechanisms underlying the processing of hierarchically organized patterns: interferences from patients with unilateral cortical lesions. J Exp Psychol Learn Mem Cognit 16:471–483. doi:10.1037/0278-7393.16.3.471 CrossRefGoogle Scholar
  22. Love J, Selker R, Marsman M, Jamil T, Dropmann D, Verhagen AJ, Wagenmakers EJ (2015) JASP (Version 0.7) [Computer software]. http://jasp-stats.org
  23. Lynch Alfaro JW, Boubli JP, Olson LE, Di Fiore A, Wilson B, Gutiérrez-Espeleta GA, Chiou KL, Schulte M, Neitzel S, Ross V, Schwochow D, Nguyen MTT, Farias I, Janson C, Alfaro ME (2012a) Explosive Pleistocene range expansion leads to widespread Amazonian sympatry between robust and gracile capuchin monkeys. J Biogeogr 39:272–288. doi:10.1111/j.1365-2699.2011.02609.x CrossRefGoogle Scholar
  24. Lynch Alfaro JW, De Souza Silva J, Rylands AB (2012b) How different are robust and gracile capuchin monkeys? An argument for the use of Sapajus and Cebus. Am J Primatol 74:273–286. doi:10.1002/ajp.22007 CrossRefGoogle Scholar
  25. Lynch Alfaro JW, Izar P, Ferreira R (2014) Capuchin monkey research priorities and urgent issues. Am J Primatol 76:705–720. doi:10.1002/ajp.22269 CrossRefPubMedGoogle Scholar
  26. Navon D (1977) Forest before the trees: the precedence of global features in visual perception. Cogn Psychol 9:353–383. doi:10.1016/0010-0285(77)90012-3 CrossRefGoogle Scholar
  27. Navon D (1981) The forest revisited: more on global precedence. Psychol Res 43:1–32. doi:10.1007/BF00309635 CrossRefGoogle Scholar
  28. Navon D (2003) What does a compound letter tell the psychologist’s mind? Acta Psychol 114:273–309. doi:10.1016/j.actpsy.2003.06.002 CrossRefGoogle Scholar
  29. Neiworth JJ, Gleichman AJ, Olinick AS, Lamp KE (2006) Global and local processing in adult humans (Homo sapiens), 5-year-old children (Homo sapiens), and adult cotton-top tamarins (Saguinus oedipus). J Comp Psychol 120:323–330. doi:10.1037/0735-7036.120.4.323 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pitteri E, Mongillo P, Carnier P, Marinelli L (2014) Hierarchical stimulus processing by dogs (Canis familiaris). Anim Cognit 17:869–877. doi:10.1007/s10071-013-0720-1 CrossRefGoogle Scholar
  31. Raftery AE (1995) Bayesian model selection in social research. In: Marsden PV (ed) Sociological methodology, vol 25. Blackwell, Cambridge, pp 111–196Google Scholar
  32. Sanderson DJ, Pearce JM, Kyd RJ, Aggleton JP (2006) The importance of the rat hippocampus for learning the structure of visual arrays. Eur J Neurosci 24:1781–1788. doi:10.1111/j.1460-9568.2006.05035.x CrossRefPubMedGoogle Scholar
  33. Spinozzi G, De Lillo C, Truppa V (2003) Global and local processing of hierarchical visual stimuli in tufted capuchin monkeys (Cebus apella). J Comp Psychol 117:15–23. doi:10.1037/0735-7036.117.1.15 CrossRefPubMedGoogle Scholar
  34. Spinozzi G, De Lillo C, Salvi V (2006) Local advantage in the visual processing of hierarchical stimuli following manipulations of stimulus size and element numerosity in monkeys (Cebus apella). Behav Brain Res 166:45–54. doi:10.1016/j.bbr.2005.06.043 CrossRefPubMedGoogle Scholar
  35. Tanaka HK, Fujita I (2000) Global and local processing of visual patterns in macaque monkeys. Neuroreport 11:2881–2884CrossRefPubMedGoogle Scholar
  36. Tanaka HK, Onoe H, Tsukada H, Fujita I (2001) Attentional modulation of neural activity in the macaque inferior temporal cortex during global and local processing. Neurosci Res 39:469–472. doi:10.1016/S0168-0102(01)00202-4 CrossRefPubMedGoogle Scholar
  37. Truppa V, Garofoli D, Castorina G, Piano Mortari E, Natale F, Visalberghi E (2010a) Identity concept learning in matching-to-sample tasks by tufted capuchin monkeys (Cebus apella). Anim Cognit 13:835–848. doi:10.1007/s10071-010-0332-y CrossRefGoogle Scholar
  38. Truppa V, Sovrano V, Spinozzi G, Bisazza A (2010b) Processing of visual hierarchical stimuli by fish (Xenotoca eiseni). Behav Brain Res 207:51–60. doi:10.1016/j.bbr.2009.09.039 CrossRefPubMedGoogle Scholar
  39. Truppa V, Piano Mortari E, Garofoli D, Privitera S, Visalberghi E (2011) Same/different concept learning by capuchin monkeys in matching-to-sample tasks. PLoS ONE 6:e23809. doi:10.1371/journal.pone.0023809 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Truppa V, De Simone D, Piano Mortari E, De Lillo C (2014) Effects of brief time delays on matching-to-sample abilities in capuchin monkeys (Sapajus spp.). Behav Brain Res 271:240–248. doi:10.1016/j.bbr.2014.05.023 CrossRefPubMedGoogle Scholar
  41. Truppa V, Carducci P, Trapanese C, Hanus D (2015) Does presentation format influence visual size discrimination in tufted capuchin monkeys (Sapajus spp.)? PLoS ONE 10:e0126001. doi:10.1371/journal.pone.0126001 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Truppa V, De Simone DA, De Lillo C (2016) Short-term memory effects on visual global/local processing in tufted capuchin monkeys (Sapajus spp.). J Comp Psychol 130:162–173. doi:10.1037/com0000018 CrossRefPubMedGoogle Scholar
  43. vanMarle K, Aw J, McCrink K, Santos LR (2006) How capuchin monkeys (Cebus apella) quantify objects and substances. J Comp Psychol 120:416–426. doi:10.1037/0735-7036.120.4.416 CrossRefPubMedGoogle Scholar
  44. Wagenmakers EJ (2007) A practical solution to the pervasive problems of p values. Psychol Bull Rev 14:779–804CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Cognitive Sciences and TechnologiesNational Research Council (CNR)RomeItaly
  2. 2.Environmental and Evolutionary Biology PhD Program, Department of Environmental BiologySapienza University of RomeRomeItaly
  3. 3.Department of PhilosophySapienza University of RomeRomeItaly
  4. 4.Department of General PsychologyUniversity of PaduaPaduaItaly
  5. 5.Department of Neuroscience, Psychology and BehaviourUniversity of LeicesterLeicesterUK

Personalised recommendations