Animal Cognition

, Volume 20, Issue 2, pp 233–241 | Cite as

The glass is not yet half empty: agitation but not Varroa treatment causes cognitive bias in honey bees

  • Helge Schlüns
  • Helena Welling
  • Julian René Federici
  • Lars Lewejohann
Original Paper

Abstract

Honey bees (Apis mellifera) are prone to judge an ambiguous stimulus negatively if they had been agitated through shaking which simulates a predator attack. Such a cognitive bias has been suggested to reflect an internal emotional state analogous to humans who judge more pessimistically when they do not feel well. In order to test cognitive bias experimentally, an animal is conditioned to respond to two different stimuli, where one is punished while the other is rewarded. Subsequently a third, ambiguous stimulus is presented and it is measured whether the subject responds as if it expects a reward or a punishment. Generally, it is assumed that negative experiences lower future expectations, rendering the animals more pessimistic. Here we tested whether a most likely negatively experienced formic acid treatment against the parasitic mite Varroa destructor also affects future expectations of honey bees. We applied an olfactory learning paradigm (i.e., conditioned proboscis extension response) using two odorants and blends of these odorants as the ambiguous stimuli. Unlike agitating honey bees, exposure to formic acid did not significantly change the response to the ambiguous stimuli in comparison with untreated bees. Overall evidence suggests that the commonest treatment against one of the most harmful bee pests has no detrimental effects on cognitive bias in honey bees.

Keywords

Proboscis extension reflex Olfactory conditioning Formic acid Appetitive learning Aversive learning Invertebrate emotion 

References

  1. Anderson DL, Trueman JWH (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp Appl Acarol 24:165–189CrossRefPubMedGoogle Scholar
  2. Armstrong T, Olatunji BO (2012) Eye tracking of attention in the affective disorders: a meta-analytic review and synthesis. Clin Psychol Rev 32:704–723CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bateson M, Desire S, Gartside SE, Wright GA (2011) Agitated honeybees exhibit pessimistic cognitive biases. Curr Biol 21(12):1070–1073CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bethell EJ (2015) A “how-to” guide for designing judgment bias studies to assess captive animal welfare. J Appl Anim Welf Sci 18:S18–S42CrossRefPubMedGoogle Scholar
  5. Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97(2):107–119CrossRefPubMedGoogle Scholar
  6. Bolli HK, Bogdanov S, Imdorf A, Fluri P (1993) Zur Wirkungsweise von Ameisensäure bei Varroa jacobsoni Oud und der Honigbiene (Apis mellifera L). Apidologie 24(1):51–57CrossRefGoogle Scholar
  7. Boncristiani H, Underwood R, Schwarz R, Evans JD, Pettis J, vanEngelsdorp D (2012) Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J Insect Physiol 58:613–620CrossRefPubMedGoogle Scholar
  8. Bos N, Roussel E, Giurfa M, d’Ettorre P (2014) Appetitive and aversive olfactory learning induce similar generalization rates in the honey bee. Anim Cogn 17(2):399–406CrossRefPubMedGoogle Scholar
  9. Calderone NW (2000) Effective fall treatment of Varroa jacobsoni (Acari: Varroidae) with a new formulation of formic acid in colonies of Apis mellifera (Hymenoptera: Apidae) in the northeastern United States. J Econ Entomol 93(4):1065–1075CrossRefPubMedGoogle Scholar
  10. Charrière JD, Imdorf A, Kilchenmann V (1992) Konzentrationen der Ameisensäure in der Stockluft von Bienenvölkern während der Anwendung gegen Varroa jacobsoni. ADIZ 26(9):12–16Google Scholar
  11. Dukas R (2008) Mortality rates of honey bees in the wild. Insect Soc 55:252–255CrossRefGoogle Scholar
  12. Eysenck MW, Mogg K, May J, Richards A, Mathews A (1991) Bias in interpretation of ambiguous sentences related to threat in anxiety. J Abnorm Psychol 100:144–150CrossRefPubMedGoogle Scholar
  13. Genersch E, Evans JD, Fries I (2010) Honey bee disease overview. J Invertebr Pathol 103(Suppl 1):S2–S4CrossRefPubMedGoogle Scholar
  14. Giray T, Robinson GE (1994) Effects of intracolony variability in behavioral development on plasticity of division of labor in honey bee colonies. Behav Ecol Sociobiol 35(1):3–20CrossRefGoogle Scholar
  15. Giurfa M (2013) Cognition with few neurons: higher-order learning in insects. Trends Neurosci 36(5):285–294CrossRefPubMedGoogle Scholar
  16. Giurfa M, Sandoz J-C (2012) Invertebrate learning and memory: fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learn Mem 19(2):54–66CrossRefPubMedGoogle Scholar
  17. Guerrieri F, Schubert M, Sandoz J-C, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3(4):e60CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gygax L (2014) The A to Z of statistics for testing cognitive judgement bias. Anim Behav 95:59–69CrossRefGoogle Scholar
  19. Harding EJ, Paul ES, Mendl M (2004) Animal behaviour: cognitive bias and affective state. Nature 427(6972):312CrossRefPubMedGoogle Scholar
  20. Horvath K, Angeletti D, Nascetti G, Carere C (2013) Invertebrate welfare: an overlooked issue. Ann Ist Super Sanita 49(1):9–17PubMedGoogle Scholar
  21. Kloke V, Schreiber RS, Bodden C, Moellers J, Ruhmann H, Kaiser S, Lesch KP, Sacher N, Lewejohann L (2014) Hope for the best or prepare for the worst? Towards a spatial cognitive bias test for mice. PLoS One 9(8):e105431CrossRefPubMedPubMedCentralGoogle Scholar
  22. Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33(2):253–280CrossRefGoogle Scholar
  23. Leonard AS, Dornhaus A, Papaj DR (2011) Flowers help bees cope with uncertainty: signal detection and the function of floral complexity. J Exp Biol 214:113–121CrossRefPubMedGoogle Scholar
  24. MacLeod AK, Byrne A (1996) Anxiety, depression, and the anticipation of future positive and negative experiences. J Abnorm Psychol 105:286–289CrossRefPubMedGoogle Scholar
  25. Mason GJ (2011) Invertebrate welfare: where is the real evidence for conscious affective states? Trends Ecol Evol 26:212–213CrossRefGoogle Scholar
  26. Matt GE, Vázquez C, Campbell WK (1992) Mood-congruent recall of affectively toned stimuli: a meta-analytic review. Clin Psychol Rev 12:227–255CrossRefGoogle Scholar
  27. Mendl M, Burman OHP, Parker RMA, Paul ES (2009) Cognitive bias as an indicator of animal emotion and welfare: emerging evidence and underlying mechanisms. Appl Anim Behav Sci 118:161–181CrossRefGoogle Scholar
  28. Mendl M, Paul ES, Chittka L (2011) Animal behaviour: emotion in invertebrates? Curr Biol 21(12):R463–R465CrossRefPubMedGoogle Scholar
  29. Ostermann DJ, Currie RW (2004) Effect of formic acid formulations on honey bee (Hymenoptera: Apidae) colonies and influence of colony and ambient conditions on formic acid concentration in the hive. J Econ Entomol 97(5):1500–1508CrossRefPubMedGoogle Scholar
  30. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  31. Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103(Suppl 1):S96–S119CrossRefPubMedGoogle Scholar
  32. Satta A, Floris I, Eguaras M, Cabras P, Garau VL, Melis M (2005) Formic acid-based treatments for control of Varroa destructor in a Mediterranean area. J Econ Entomol 98(2):267–273CrossRefPubMedGoogle Scholar
  33. Scheiner R, Barnert M, Erber J (2003) Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees. Apidologie 34(1):67–72CrossRefGoogle Scholar
  34. Scheiner R, Abramson CI, Brodschneider R, Crailsheim K, Farina WM, Fuchs S, Grünewald B, Hahshold S, Karrer M, Koeniger G, Koeniger N, Menzel R, Mujagic S, Radspieler G, Schmickl T, Schneider C, Siegel AJ, Szopek M, Thenius R (2013) Standard methods for behavioral studies of Apis mellifera. J Apic Res 52(4):1–58CrossRefGoogle Scholar
  35. Sherwin CM (2001) Can invertebrates suffer? Or, how robust is argument-by-analogy? Anim Welf 10:S103–S118Google Scholar
  36. Smith BH, Abramson CI, Tobin TR (1991) Conditional withholding of proboscis extension in honeybees (Apis mellifera) during discriminative punishment. J Comp Psychol 105(4):345–356CrossRefPubMedGoogle Scholar
  37. Storer TI, Vansell GH (1935) Bee-eating proclivities of the striped skunk. J Mammal 16(2):118–121CrossRefGoogle Scholar
  38. Underwood RM, Currie RW (2003) The effects of temperature and dose of formic acid on treatment efficacy against Varroa destructor (Acari: Varroidae), a parasite of Apis mellifera (Hymenoptera: Apidae). Exp Appl Acarol 29:303–313CrossRefPubMedGoogle Scholar
  39. Williams JM, Mathews A, MacLeod C (1996) The emotional stroop task and psychopathology. Psychol Bull 120:3–24CrossRefPubMedGoogle Scholar
  40. Wright GA, Kottcamp SM, Thomson MGA (2008) Generalization mediates sensitivity to complex odor features in the Honeybee. PLoS One 3(2):e1704CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Behavioral BiologyUniversity of OsnabrueckOsnabrückGermany

Personalised recommendations