Advertisement

Animal Cognition

, Volume 19, Issue 3, pp 581–591 | Cite as

Multiple cue use and integration in pigeons (Columba livia)

  • Eric L. G. Legge
  • Christopher R. Madan
  • Marcia L. SpetchEmail author
  • Elliot A. Ludvig
Original Paper

Abstract

Encoding multiple cues can improve the accuracy and reliability of navigation and goal localization. Problems may arise, however, if one cue is displaced and provides information which conflicts with other cues. Here we investigated how pigeons cope with cue conflict by training them to locate a goal relative to two landmarks and then varying the amount of conflict between the landmarks. When the amount of conflict was small, pigeons tended to integrate both cues in their search patterns. When the amount of conflict was large, however, pigeons used information from both cues independently. This context-dependent strategy for resolving spatial cue conflict agrees with Bayes optimal calculations for using information from multiple sources.

Keywords

Cue integration Spatial navigation Bayesian Pigeons Hierarchical Win-shift Spatial cognition Cue-conflict Computational modeling 

Notes

Acknowledgments

The authors are thankful to Isaac Lank for help in designing and maintain the experimental apparatus and the many undergraduate research assistants who helped run daily experimental trials. We especially thank Carla Edgington and Andrea Nicole Savignac for their exceptional work scoring, coordinating subject run schedules, and running subjects. Funding was provided by a National Sciences and Engineering Research Council (NSERC) of Canada Discovery grant #38861 to MLS, and NSERC Alexander Graham Bell Canada Graduate Scholarships (Doctoral-level) to ELGL and CRM.

Compliance with ethical standards

Ethical statement

All procedures performed in studies involving animals were in accordance with the ethical standards of the University of Alberta and the Canadian Council on Animal Care and were approved by the Bioscience Animal Care and Use Committee.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alais D, Burr D (2004) The ventriloquist effect results from near- optimal bimodal integration. Curr Biol 14(3):257–262. doi: 10.1016/j.cub.2004.01.029 CrossRefPubMedGoogle Scholar
  2. Balda RP, Turek RJ (1984) The cache recovery system as an example of memory capabilities in Clark’s nutcrackers. In: Roitblat HL, Bever TG, Terrace HS (eds) Animal cognition. Erlbaum, Hillsdale, pp 513–532Google Scholar
  3. Brodbeck DR (1994) Memory for spatial and local cues: a comparison of a storing and a nonstoring species. Anim Learn Behav 22(2):119–133. doi: 10.3758/BF03199912 CrossRefGoogle Scholar
  4. Burnham KE, Anderson DR (2002) Model selection and multimode inference, 2nd edn. Springer, New YorkGoogle Scholar
  5. Burnham KE, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Method Res 33:261–304. doi: 10.1177/0049124104268644 CrossRefGoogle Scholar
  6. Cartwright BA, Collett TS (1983) Landmark learning in bees. J Comp Physiol A 151:521–543CrossRefGoogle Scholar
  7. Chalfoun AD, Martin TE (2010) Facultative nest patch shifts in response to nest predation risk in the Brewer’s sparrow: a “win-stay, lose-switch” strategy? Oecologia 163(4):885–892. doi: 10.1007/s00442-010-1679-0 CrossRefPubMedGoogle Scholar
  8. Cheng K (2005) Behavioral ecology of odometric memories in desert ants: acquisition, retention, and integration. Behav Ecol 17(2):227–235. doi: 10.1093/beheco/arj017 CrossRefGoogle Scholar
  9. Cheng K, Sherry DF (1992) Landmark-based spatial memory in birds (Parus atricapillus and Columba livia): the use of edges and distances to represent spatial positions. J Comp Psychol 106:331–341CrossRefGoogle Scholar
  10. Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ (2007) Bayesian integration of spatial information. Psychol Bull 133(4):625–637. doi: 10.1037/0033-2909.133.4.625 CrossRefPubMedGoogle Scholar
  11. Cheng K, Narendra A, Sommer S, Wehner R (2009) Traveling in clutter: navigation in the Central Australian desert ant Melophorus bagoti. Behav Process 80:261–268. doi: 10.1016/j.beproc.2008.10.015 CrossRefGoogle Scholar
  12. Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433CrossRefPubMedGoogle Scholar
  13. Friedman A, Ludvig EA, Legge ELG, Vuong QC (2012) Bayesian combination of two-dimensional location estimates. Behav Res Method 45:98–107. doi: 10.3758/s13428-012-0241-x CrossRefGoogle Scholar
  14. Gaffan EA, Davies J (1981) The role of exploration in win-shit and win-stay performance on a radial maze. Learn Motiv 12:282–299. doi: 10.1016/0023-9690(81)90010-2 CrossRefGoogle Scholar
  15. Gigerenzer G, Brighton H (2009) Homo heuristicus: why biased minds make better inferences. Top Cogn Sci 1:107–143. doi: 10.1111/j.1756-8765.2008.01006.x CrossRefPubMedGoogle Scholar
  16. Goto K, Wills AJ, Lea SEG (2004) Global-feature classification can be acquired more rapidly than local-feature classification in both humans and pigeons. Anim Cogn 7:109–113. doi: 10.1007/s10071-003-0193-8 CrossRefPubMedGoogle Scholar
  17. Grohn M, Lokki T, Takala T (2005) Comparison of auditory, visual, and audiovisual navigation in a 3D space. ACM Trans Appl Percept 2(4):564–570CrossRefGoogle Scholar
  18. Hodges CM (1985) Bumble bee foraging: the threshold departure rule. Ecology 66(1):179–187. doi: 10.2307/1941318 CrossRefGoogle Scholar
  19. Hosoi E, Rittenhouse LR, Swift DM, Richards RW (1995) Foraging strategies of cattle in a y-maze: influence of food availability. Appl Anim Behav Sci 43(3):189–196. doi: 10.1016/0168-1591(95)00565-A CrossRefGoogle Scholar
  20. Kamil AC, Cheng K (2001) Way-finding and landmarks: the multiple-bearings hypothesis. J Exp Biol 204:103–113PubMedGoogle Scholar
  21. Kamil AC, Goodyear AJ, Cheng K (2001) The use of landmarks by Clark’s nutcrackers: first tests of a new model. J Navig 54(3):429–435. doi: 10.1017/S0373463301001436 CrossRefGoogle Scholar
  22. Kearns MJ, Warren WH, Duchon AP, Tarr MJ (2002) Path integration from optic flow and body senses in a homing task. Perception 31(3):349–374. doi: 10.1068/p3311 CrossRefPubMedGoogle Scholar
  23. Beierholm U, Shams L, Ma WJ, Körding K (2007) Comparing Bayesian models for multisensory cue combination without mandatory integration. Adv Neural Inf 19:81–88Google Scholar
  24. Körding KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427(6971):244–247CrossRefPubMedGoogle Scholar
  25. Körding K, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L (2007) Causal inference in multi sensory perception. PLoS ONE 2(9):e943. doi: 10.1371/journal.pone.0000943 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lea SEG, Wills AJ (2008) Use of multiple dimensions in learned discriminations. Comp Cogn Behav Rev 3:115–133CrossRefGoogle Scholar
  27. Lea SEG, Wills AJ, Leaver LA, Ryan CME, Bryant CML, Millar L (2009) Comparative analysis of the categorization of multidimensional stimuli: II. Strategic information search in humans (Homo sapiens) but not pigeons (Columba livia). J Comp Psychol 123:406–420. doi: 10.1037/a0016851 CrossRefPubMedGoogle Scholar
  28. Legge ELG (2013) Multiple Cue Use in Animals. Doctoral dissertation, University of AlbertaGoogle Scholar
  29. Legge ELG, Spetch ML, Batty ER (2009) Pigeons (Columba livia) hierarchical organization of local and global cues in touch screen tasks. Behav Process 80(2):128–139. doi: 10.1016/j.beproc.2008.10.011 CrossRefGoogle Scholar
  30. Legge ELG, Wystrach A, Spetch ML, Cheng K (2014) Combining sky and earth: desert ants (Melophorus bagoti) show weighted integration of celestial and terrestrial cues. J Exp Biol 217:4159–4166. doi: 10.1242/jeb.107862 CrossRefPubMedGoogle Scholar
  31. Pfuhl G, Tjelmeland H, Biegler R (2011) Precision and reliability in animal navigation. B Math Biol 73:951–977. doi: 10.1007/s11538-010-9547-y CrossRefGoogle Scholar
  32. Raftery AE (1999) Bayes factor and BIC. Sociol Method Res 27(3):411–427CrossRefGoogle Scholar
  33. Rossier J, Haeberli C, Schenk F (2000) Auditory cues support place navigation in rats when associated with a visual cue. Behav Brain Res 117:209–214. doi: 10.1016/S0166-4328(00)00293-X CrossRefPubMedGoogle Scholar
  34. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  35. Spetch ML, Edwards CA (1988) Pigeons, Columba livia, use of global and local cues for spatial memory. Anim Behav 36(1):293–296. doi: 10.1016/S0003-3472(88)80274-4 CrossRefGoogle Scholar
  36. Spetch ML, Kelly DM (2006) Comparative spatial cognition: processes in landmark- and surface-based place finding. In: Wasserman EA, Zentall TR (eds) Comparative cognition: experimental explorations of animal intelligence. Oxford University Press, Oxford, pp 210–228Google Scholar
  37. Spetch ML, Cheng K, Mondloch MV (1992) Landmark use by pigeons in a touch-screen spatial search task. Anim Learn Behav 20:281–292CrossRefGoogle Scholar
  38. Steck K, Hansson BS, Knaden M (2009) Smells like home: desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest. Front Zool. doi: 10.1186/1742-9994-6-5 PubMedPubMedCentralGoogle Scholar
  39. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies. NeuroImage 46(4):1004–1017. doi: 10.1016/j.neuroimage.2009.03.025 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wallace DG, Gorny B, Whishaw IQ (2002) Rats can track odors, other rats, and themselves: implications for the study of spatial behavior. Behav Brain Res 131:185–192. doi: 10.1016/S0166-4328(01)00384-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Eric L. G. Legge
    • 1
  • Christopher R. Madan
    • 1
    • 2
  • Marcia L. Spetch
    • 1
    Email author
  • Elliot A. Ludvig
    • 3
  1. 1.Department of PsychologyUniversity of AlbertaEdmontonCanada
  2. 2.Department of PsychologyBoston CollegeChestnut HillUSA
  3. 3.Department of PsychologyUniversity of WarwickCoventryUK

Personalised recommendations