The effect of oxytocin on biological motion perception in dogs (Canis familiaris)


Recent studies have shown that the neuropeptide oxytocin is involved in the regulation of several complex human social behaviours. There is, however, little research on the effect of oxytocin on basic mechanisms underlying human sociality, such as the perception of biological motion. In the present study, we investigated the effect of oxytocin on biological motion perception in dogs (Canis familiaris), a species adapted to the human social environment and thus widely used to model many aspects of human social behaviour. In a within-subjects design, dogs (N = 39), after having received either oxytocin or placebo treatment, were presented with 2D projection of a moving point-light human figure and the inverted and scrambled version of the same movie. Heart rate (HR) and heart rate variability (HRV) were measured as physiological responses, and behavioural response was evaluated by observing dogs’ looking time. Subjects were also rated on the personality traits of Neuroticism and Agreeableness by their owners. As expected, placebo-pretreated (control) dogs showed a spontaneous preference for the biological motion pattern; however, there was no such preference after oxytocin pretreatment. Furthermore, following the oxytocin pretreatment female subjects looked more at the moving point-light figure than males. The individual variations along the dimensions of Agreeableness and Neuroticism also modulated dogs’ behaviour. Furthermore, HR and HRV measures were affected by oxytocin treatment and in turn played a role in subjectsʼ looking behaviour. We discuss how these findings contribute to our understanding of the neurohormonal regulatory mechanisms of human (and non-human) social skills.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Andari E, Duhamel J-R, Zalla T, Herbrecht E, Leboyer M, Sirigu A (2010) Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci USA 107:4389–4394. doi:10.1073/pnas.0910249107

  2. Andics A, Gácsi M, Faragó T, Kis A, Miklósi Á (2014) Voice-sensitive regions in the dog and human brain are revealed by comparative fMRI. Curr Biol 24:574–578. doi:10.1016/j.cub.2014.01.058

  3. Beintema JA, Lappe M (2002) Perception of biological motion without local image motion. Proc Natl Acad Sci USA 99:5661–5663. doi:10.1073/pnas.082483699

  4. Bensky MK, Gosling SD, Sinn DL (2013) The world from a dog’s point of view: a review and synthesis of dog cognition research. Adv Study Behav 45:209–406. doi:10.1016/B978-0-12-407186-5.00005-7

  5. Blake R (1993) Cats perceive biological motion Psychol Sci. doi:10.1111/j.1467-9280.1993.tb00557.x

  6. Brown J, Kaplan G, Rogers LJ, Vallortigara G (2010) Perception of biological motion in common marmosets (Callithrix jacchus): by females only. Anim Cogn 13(3):555–564

  7. Campbell A (2010) Oxytocin and human social behavior. Pers Soc Psychol Rev 14:281–295. doi:10.1177/1088868310363594

  8. Chang WH, Lee IH, Chen KC, Chi MH, Chiu NT, Yao WJ, Lu RB, Yang YK, Chen PS (2014) Oxytocin receptor gene rs53576 polymorphism modulates oxytocin–dopamine interaction and neuroticism traits—a SPECT study. Psychoneuroendocrinology 47:212–220. doi:10.1016/j.psyneuen.2014.05.020

  9. Choleris E, Devidze N, Kavaliers M, Pfaff DW (2008) Steroidal/neuropeptide interactions in hypothalamus and amygdala related to social anxiety. Brain Res, Prog. doi:10.1016/S0079-6123(08)00424-X

  10. Christov-Moore L, Simpson EA, Coudé G, Grigaityte K, Iacoboni M, Ferrari PF (2014) Empathy: gender effects in brain and behavior. Neurosci Biobehav Rev 46:604–627. doi:10.1016/j.neubiorev.2014.09.001

  11. Cutting JE, Moore C, Morrison R (1988) Masking the motions of human gait. Percept Psychophys 44:339–347. doi:10.3758/BF03210415

  12. De Vries GJ (2008) Sex differences in vasopressin and oxytocin innervation of the brain. Prog Brain Res. doi:10.1016/S0079-6123(08)00402-0

  13. Dittrich WH, Troscianko T, Lea SEG, Morgan D (1996) Perception of emotion from dynamic point-light displays represented in dance. Perception 25:727–738. doi:10.1068/p250727

  14. Domes G, Heinrichs M, Gläscher J, Büchel C, Braus DF, Herpertz SC (2007) Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol Psychiatry 62:1187–1190. doi:10.1016/j.biopsych.2007.03.025

  15. Domes G, Lischke A, Berger C, Grossmann A, Hauenstein K, Heinrichs M, Herpertz SC (2010) Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology 35:83–93. doi:10.1016/j.psyneuen.2009.06.016

  16. Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322:900–904. doi:10.1126/science.1158668

  17. Faragó T, Pongrácz P, Miklósi À, Huber L, Virányi Z, Range F (2010) Dogs’ expectation about signalers’ body size by virtue of their growls. PLoS One. doi:10.1371/journal.pone.0015175

  18. Gácsi M, Gyori B, Miklósi Á, Virányi Z, Kubinyi E, Topál J, Csányi V (2005) Species-specific differences and similarities in the behavior of hand-raised dog and wolf pups in social situations with humans. Dev Psychobiol 47:111–122. doi:10.1002/dev.20082

  19. Gácsi M, Maros K, Sernkvist S, Faragó T, Miklósi Á (2013) human analogue safe haven effect of the owner: behavioural and heart rate response to stressful social stimuli in dogs. PLoS One. doi:10.1371/journal.pone.0058475

  20. Garcia-Coll C, Kagan J, Reznick JS (1984) Behavioral inhibition in young children. Child Dev 55:1005–1019. doi:10.2307/1130152

  21. Giese MA, Poggio T (2003) Neural mechanisms for the recognition of biological movements. Nat Rev Neurosci 4:179–192. doi:10.1038/nrn1057

  22. Gimpl G, Wiegand V, Burger K, Fahrenholz F (2002) Cholesterol and steroid hormones: modulators of oxytocin receptor function. Prog Brain Res. doi:10.1016/S0079-6123(02)39006-X

  23. Gosling SD, Kwan VSY, John OP (2003) A dog’s got personality: a cross-species comparative approach to personality judgments in dogs and humans. J Pers Soc Psychol 85:1161–1169. doi:10.1037/0022-3514.85.6.1161

  24. Guastella AJ, Mitchell PB, Dadds MR (2008) Oxytocin increases gaze to the eye region of human faces. Biol Psychiatry 63:3–5

  25. Hernádi A, Kis A, Kanizsár O, Tóth K, Miklósi B, Topál J (2015) Intranasally administered oxytocin affects how dogs (Canis familiaris) react to the threatening approach of their owner and an unfamiliar experimenter. Behav Processes 119:1–5. doi:10.1016/j.beproc.2015.07.001

  26. Herzmann G, Bird CW, Freeman M, Curran T (2013) Effects of oxytocin on behavioral and ERP measures of recognition memory for own-race and other-race faces in women and men. Psychoneuroendocrinology 38:2140–2151. doi:10.1016/j.psyneuen.2013.04.002

  27. Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys. doi:10.3758/BF03212378

  28. Kéri S, Benedek G (2009) Oxytocin enhances the perception of biological motion in humans. Cogn Affect Behav Neurosci 9:237–241. doi:10.3758/CABN.9.3.237

  29. Kis A, Bence M, Lakatos G, Pergel E, Turcsán B, Pluijmakers J, Vas J, Elek Z, Brúder I, Földi L, Sasvári-Székely M, Miklósi A, Rónai Z, Kubinyi E (2014a) Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris). PLoS One 9:e83993. doi:10.1371/journal.pone.0083993

  30. Kis A, Kanizsár O, Gácsi M, Topál J (2014b) Intranasally administered oxytocin decreases heart rate and increases heart rate variability in dogs. J Vet Behav Clin Appl Res 9:e15. doi:10.1016/j.jveb.2014.09.050

  31. Kis A, Hernádi A, Kanizsár O, Gácsi M, Topál J (2015) Oxytocin induces positive expectations about ambivalent stimuli (cognitive bias) in dogs. Horm Behav 69:1–7. doi:10.1016/j.yhbeh.2014.12.004

  32. Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W (2009) Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature 459:257–261. doi:10.1038/nature07868

  33. Krueger C, Tian L (2004) A comparison of the general linear mixed model and repeated measures ANOVA using a dataset with multiple missing data points. Biol Res Nurs 6:151–157. doi:10.1177/1099800404267682

  34. Lakatos G, Soproni K, Dóka A, Miklósi Á (2009) A comparative approach to dogs’ (Canis familiaris) and human infants’ comprehension of various forms of pointing gestures. Anim Cogn 12:621–631. doi:10.1007/s10071-009-0221-4

  35. MacKinnon LM, Troje NF, Dringenberg HC (2010) Do rats (Rattus norvegicus) perceive biological motion? Exp Brain Res 205:571–576. doi:10.1007/s00221-010-2378-0

  36. Manera V, Schouten B, Becchio C, Bara BG, Verfaillie K (2010) Inferring intentions from biological motion: a stimulus set of point-light communicative interactions. Behav Res Methods 42:168–178. doi:10.3758/BRM.42.1.168

  37. Maros K, Doka A, Miklósi Á (2008) Behavioural correlation of heart rate changes in family dogs. Appl Anim Behav Sci 109:329–341. doi:10.1016/j.applanim.2007.03.005

  38. Miklósi Á, Topál J (2013) What does it take to become “best friends”? Evolutionary changes in canine social competence. Trends Cogn Sci. doi:10.1016/j.tics.2013.04.005

  39. Nagasawa M, Mitsui S, En S, Ohatani N, Ohta M, Sakuma Y, Onaka T, Mogi K, Kikusui T (2015) Oxytocin-gaze positive loop and the coevolution of human-dog bonds. Science 80(348):333–336

  40. Nakayasu T, Watanabe E (2013) Biological motion stimuli are attractive to medaka fish. Anim Cogn. doi:10.1007/s10071-013-0687-y

  41. Nishida S (2011) Advancement of motion psychophysics: review 2001–2010. J Vis. doi:10.1167/11.5.11

  42. Nitzschner M, Melis AP, Kaminski J, Tomasello M (2012) Dogs (Canis familiaris) evaluate humans on the basis of direct experiences only. PLoS One. doi:10.1371/journal.pone.0046880

  43. Oliva JL, Rault JL, Appleton B, Lill A (2015) Oxytocin enhances the appropriate use of human social cues by the domestic dog (Canis familiaris) in an object choice task. Anim Cogn. doi:10.1007/s10071-015-0843-7

  44. Pavlova M, Krägeloh-Mann I, Sokolov A, Birbaumer N (2000) Simultaneous masking of a point-light walker in children. In: Bonnet C (ed) Fechner Day 2000 (strasbg. ISP), pp 279–284

  45. Perry A, Bentin S, Shalev I, Israel S, Uzefovsky F, Bar-On D, Ebstein RP (2010) Intranasal oxytocin modulates EEG mu/alpha and beta rhythms during perception of biological motion. Psychoneuroendocrinology 35:1446–1453. doi:10.1016/j.psyneuen.2010.04.011

  46. Petrovic P, Kalisch R, Singer T, Dolan RJ (2008) Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J Neurosci 28:6607–6615. doi:10.1523/JNEUROSCI.4572-07.2008

  47. Range F, Aust U, Steurer M, Huber L (2008) Visual categorization of natural stimuli by domestic dogs. Anim Cogn 11:339–347. doi:10.1007/s10071-007-0123-2

  48. Rodrigues SM, Saslow LR, Garcia N, John OP, Keltner D (2009) Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proc Natl Acad Sci USA 106:21437–21441. doi:10.1073/pnas.0909579106

  49. Romero T, Nagasawa M, Mogi K, Hasegawa T, Kikusui T (2014) Oxytocin promotes social bonding in dogs. Proc Natl Acad Sci USA 111:9085–9090. doi:10.1073/pnas.1322868111

  50. Schöberl I, Kortekaas K, Schöberl FF, Kotrschal K (2014) Algorithm-supported visual error correction (AVEC) of heart rate measurements in dogs, Canis lupus familiaris. Behav Res Methods. doi:10.3758/s13428-014-0546-z

  51. Schouten B, Troje NF, Brooks A, van der Zwan R, Verfaillie K (2010) The facing bias in biological motion perception: effects of stimulus gender and observer sex. Atten Percept Psychophys 72:1256–1260. doi:10.3758/APP.72.5.1256

  52. Simion F, Regolin L, Bulf H (2008) A predisposition for biological motion in the newborn baby. Proc Natl Acad Sci USA 105:809–813. doi:10.1073/pnas.0707021105

  53. Skuse DH, Gallagher L (2009) Dopaminergic–neuropeptide interactions in the social brain. Trends Cogn Sci. doi:10.1016/j.tics.2008.09.007

  54. Smeltzer MD, Curtis JT, Aragona BJ, Wang Z (2006) Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neurosci Lett 394:146–151. doi:10.1016/j.neulet.2005.10.019

  55. Suomi SJ (1983) Social development in rhesus monkeys: consideration of individual differences. In: Oliverio A, Zappella M (eds) The behavior of human infants. Plenum Press, New York, pp 71–92. doi:10.1007/978-1-4613-3784-3_5

  56. Suomi SJ (1985) Response styles in monkeys: experiential effects. In: Klar H, Siever L (eds) Biologic response styles: clinical implications. American Psychiatric Press, Washington, pp 1–18

  57. Suomi SJ (1986) Anxiety-like disorders in young primates. In: Gittelman R (ed) Anxiety disorders of childhood. Guilford Press, New York, pp 1–23

  58. Takaoka A, Morisaki A, Fujita K (2013) Cross-modal concept of human gender in dogs (Canis familiaris). Jpn J Anim Psychol 130:123–130

  59. Thielke LE, Udell MAR (2015) The role of oxytocin in relationships between dogs and humans and potential applications for the treatment of separation anxiety in dogs. Biol Rev. doi:10.1111/brv.12235

  60. Tomonaga M (2001) Visual search for biological motion patterns in chimpanzees (Pan troglodytes). Psychol Int J Psychol Orient 44:46–59

  61. Troje NF, Westhoff C (2006) The inversion effect in biological motion perception: evidence for a “Life Detector”? Curr Biol 16:821–824. doi:10.1016/j.cub.2006.03.022

  62. Vallortigara G, Regolin L, Marconato F (2005) Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PLoS Biol 3:1312–1316. doi:10.1371/journal.pbio.0030208

Download references


Financial support was provided by the Hungarian Scientific Research Fund (OTKA K100695, K112138) and the Hungarian Academy of Sciences (MTA-ELTE 01 031). We thank Katinka Tóth for assistance in data collection and Ádám Miklósi for his support.

Author information

Correspondence to Krisztina Kovács or Anna Kis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Krisztina Kovács and Anna Kis have contributed equally to this work and should be considered as co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 4493 kb)

Supplementary material 1 (AVI 4493 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kovács, K., Kis, A., Kanizsár, O. et al. The effect of oxytocin on biological motion perception in dogs (Canis familiaris). Anim Cogn 19, 513–522 (2016) doi:10.1007/s10071-015-0951-4

Download citation


  • Oxytocin
  • Biological motion
  • Dog (Canis familiaris)
  • Heart rate
  • Individual traits