Animal Cognition

, Volume 19, Issue 1, pp 15–30 | Cite as

Stimulus probability effects on temporal bisection performance of mice (Mus musculus)

  • Başak Akdoğan
  • Fuat Balcı
Original Paper


In the temporal bisection task, participants classify experienced stimulus durations as short or long based on their temporal similarity to previously learned reference durations. Temporal decision making in this task should be influenced by the experienced probabilities of the reference durations for adaptiveness. In this study, we tested the temporal bisection performance of mice (Mus musculus) under different short and long reference duration probability conditions implemented across two experimental phases. In Phase 1, the proportion of reference durations (compared to probe durations) was 0.5, whereas in Phase 2 it was increased to 0.8 to further examine the adjustment of choice behavior with more frequent reference duration presentations (under higher reinforcement rate). Our findings suggest that mice developed adaptive biases in their choice behaviors. These adjustments in choice behavior were nearly optimal as the mice maximized their gain to a great extent which required them to monitor stimulus probabilities as well as the level of variability in their temporal judgments. We further found that short but not long categorization response times were sensitive to stimulus probability manipulations, which in turn suggests an asymmetry between short and long categorizations. Finally, we investigated the latent decision processes underlying the bias manifested in subjects’ choice behavior within the diffusion model framework. Our results revealed that probabilistic information influenced the starting point and the rate of evidence accumulation process. Overall, the stimulus probability effects on choice behavior were modulated by the reinforcement rate. Our findings illustrate that mice can adapt their temporal behaviors with respect to the probabilistic contingencies in the environment.


Choice behavior Diffusion model Interval timing Optimality Temporal bisection 



This study was conducted at the Koç University Animal Research Facility. The authors thank Dr. Ali Cihan Taşkın, Mehmet Yücel, and Ahmet Kocabay for their assistance in animal care and technical support. This research was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) 1001 (#111K402) Grant to FB.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

All animal procedures were in accordance with the ethical standards of the Koç University Animal Research Local Ethics Committee.

Supplementary material

10071_2015_909_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2208 kb)


  1. Balcı F (2014) Interval timing, dopamine and motivation. Timing Time Percept 2:379–410. doi: 10.1163/22134468-00002035 CrossRefGoogle Scholar
  2. Balcı F, Gallistel CR (2006) Cross-domain transfer of quantitative discriminations: is it all a matter of proportion? Psychon Bull Rev 13:636–642. doi: 10.3758/BF03193974 PubMedCrossRefGoogle Scholar
  3. Balcı F, Simen P (2014) Decision processes in temporal discrimination. Acta Psychol (Amst) 149:157–168. doi: 10.1016/j.actpsy.2014.03.005 CrossRefGoogle Scholar
  4. Balcı F, Papachristos EB, Gallistel CR, Brunner D, Gibson J, Shumyatsky GP (2008) Interval timing in genetically modified mice: a simple paradigm. Genes Brain Behav 7:373–384. doi: 10.1111/j.1601-183x.2007.00348.x PubMedPubMedCentralCrossRefGoogle Scholar
  5. Balcı F, Freestone D, Gallistel CR (2009) Risk assessment in man and mouse. Proc Natl Acad Sci USA 106:2459–2463. doi: 10.1073/pnas.0812709106 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Balcı F, Freestone D, Simen P, deSouza L, Cohen JD, Holmes P (2011) Optimal temporal risk assessment. Front Integr Neurosci 5:1–15. doi: 10.3389/fnint.2011.00056 Google Scholar
  7. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD (2006) The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol Rev 113:700–765. doi: 10.1037/0033-295X.113.4.700 PubMedCrossRefGoogle Scholar
  8. Buhusi C, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6:755–765. doi: 10.1038/nrn1764 PubMedCrossRefGoogle Scholar
  9. Çavdaroğlu B, Zeki M, Balcı F (2014) Time-based reward maximization. Phil Trans R Soc B 369:20120461. doi: 10.1098/rstb.2012.0461 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Church RM, Deluty MZ (1977) Bisection of temporal intervals. J Exp Psychol Anim Behav Process 3:216–228. doi: 10.1037/0097-7403.3.3.216 PubMedCrossRefGoogle Scholar
  11. Çoşkun F, Sayalı ZC, Gürbüz E, Balcı F (2015) Optimal time discrimination. Q J Exp Psychol (Hove) 68:381–401. doi: 10.1080/17470218.2014.944921 CrossRefGoogle Scholar
  12. Dunovan KE, Tremel JJ, Wheeler ME (2014) Prior probability and feature predictability interactively bias perceptual decisions. Neuropsychologia 61:210–221. doi: 10.1016/j.neuropsychologia.2014.06.024 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Edwards W (1965) Optimal strategies for seeking information: models for statistics, choice reaction times, and human information processing. J Math Psychol 2:312–329. doi: 10.1016/0022-2496(65)90007-6 CrossRefGoogle Scholar
  14. Freestone D, Balcı F, Simen P, Church RM (2015) Optimal response rates in humans and rats. J Exp Psychol Anim Learn Cognit 41:39–51. doi: 10.1037/xan0000049 CrossRefGoogle Scholar
  15. Galtress T, Kirkpatrick K (2009) Reward value effects on timing in the peak procedure. Learn Motiv 40:109–131. doi: 10.1016/j.lmot.2008.05.004 CrossRefGoogle Scholar
  16. Galtress T, Kirkpatrick K (2010) Reward magnitude effects on temporal discrimination. Learn Motiv 41:108–124. doi: 10.1016/j.lmot.2010.01.002 CrossRefGoogle Scholar
  17. Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:279–325. doi: 10.1037/0033-295X.84.3.279 CrossRefGoogle Scholar
  18. Gibbon J (1981) On the form and location of the psychometric bisection function for time. J Math Psychol 24:58–87. doi: 10.1016/0022-2496(81)90035-3 CrossRefGoogle Scholar
  19. Gibbon J, Church RM, Meck WH (1984) Scalar timing in memory. Ann NY Acad Sci 423:52–77. doi: 10.1111/j.1749-6632.1984.tb23417.x PubMedCrossRefGoogle Scholar
  20. Gouvêa TS, Monteiro T, Soares S, Atallah BV, Paton JJ (2014) Ongoing behavior predicts perceptual report of interval duration. Front Neurorobot 8:10. doi: 10.3389/fnbot.2014.00010 PubMedPubMedCentralGoogle Scholar
  21. Hanks TD, Mazurek ME, Kiani R, Hopp E, Shadlen MN (2011) Elapsed decision time affects the weighting of prior probability in a perceptual decision task. J Neurosci 31:6339–6352. doi: 10.1523/JNEUROSCI.5613-10.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Jazayeri M, Shadlen MN (2010) Temporal context calibrates interval timing. Nat Neurosci 12:1020–1026. doi: 10.1038/nn.2590 CrossRefGoogle Scholar
  23. Jozefowiez J, Staddon JER, Cerutti DT (2009) The behavioral economics of choice and interval timing. Psychol Rev 116:519–539. doi: 10.1037/a0016171 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Jozefowiez J, Polack CW, Machado A, Miller RR (2014) Trial frequency effects in human temporal bisection: implication for theories of timing. Behav Processes 101:81–88. doi: 10.1016/j.beproc.2013.07.023 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kheifets A, Gallistel CR (2012) Mice take calculated risks. Proc Natl Acad Sci USA 109:8776–8779. doi: 10.1073/pnas.1205131109 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Leite FP, Ratcliff R (2011) What cognitive processes drive response biases? A diffusion model analysis. Judgm Decis Mak 6:651–687Google Scholar
  27. Lindbergh CA, Kieffaber PD (2013) The neural correlates of temporal judgments in the duration bisection task. Neuropsychologia 51:191–196. doi: 10.1016/j.neuropsychologia.2012.09.001 PubMedCrossRefGoogle Scholar
  28. Ludvig EA, Balcı F, Longpre KM (2008) Timescale dependence in a conditional temporal discrimination procedure. Behav Process 77:357–363. doi: 10.1016/j.beproc.2007.10.002 CrossRefGoogle Scholar
  29. Lustig C, Meck WH (2005) Chronic treatment with haloperidol induces deficits in working memory and feedback effects of interval timing. Brain Cogn 58:9–16. doi: 10.1016/j.bandc.2004.09.005 PubMedCrossRefGoogle Scholar
  30. Machado A, Keen R (2003) Temporal discrimination in a long operant chamber. Behav Process 62:157–182. doi: 10.1016/s0376-6357(03)00023-8 CrossRefGoogle Scholar
  31. Maggi S et al (2014) A cross-laboratory investigation of timing endophenotypes in mouse behavior. Timing Time Percept 2:35–50. doi: 10.1163/22134468-00002007 CrossRefGoogle Scholar
  32. Maloney LT (2002) Statistical decision theory and biological vision. In: Heyer D, Mausfeld R (eds) Perception and the physical world: psychological and philosophical issues in perception. Wiley, New York, pp 145–189Google Scholar
  33. Maloney LT, Zhang H (2010) Decision-theoretic models of visual perception and action. Vis Res 50:2362–2374. doi: 10.1016/j.visres.2010.09.031 PubMedCrossRefGoogle Scholar
  34. Mamassian P, Landy MS, Maloney LT (2002) Bayesian modeling of visual perception. In: Rao R, Lewicki M, Olshausen B (eds) Probabilistic models of the brain: perception and neural function. MIT Press, Cambridge, pp 13–36Google Scholar
  35. Mulder MJ, van Maanen L (2013) Are accuracy and reaction time affected via different processes? PLoS One 8:e80222. doi: 10.1371/journal.pone.0080222 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Mulder MJ, Wagenmakers EJ, Ratcliff R, Boekel W, Forstmann BU (2012) Bias in the brain: a diffusion model analysis of prior probability and potential payoff. J Neurosci 32:2335–2343. doi: 10.1523/JNEUROSCI.4156-11.2012 PubMedCrossRefGoogle Scholar
  37. Penney TB, Gibbon J, Meck WH (2008) Categorical scaling of duration bisection in pigeons (Columba livia), mice (Mus musculus), and humans (Homo sapiens). Psychol Sci 19:1103–1109. doi: 10.1111/j.1467-9280.2008.02210.x PubMedCrossRefGoogle Scholar
  38. Raslear TG (1985) Perceptual bias and response bias in temporal bisection. Percept Psychophys 38:261–268. doi: 10.3758/bf03207153 PubMedCrossRefGoogle Scholar
  39. Ratcliff R (1978) A theory of memory retrieval. Psychol Rev 85:59–108. doi: 10.1037/0033-295X.85.2.59 CrossRefGoogle Scholar
  40. Ratcliff R (1985) Theoretical interpretations of the speed and accuracy of positive and negative responses. Psychol Rev 92:212–225. doi: 10.1037/0033-295X.92.2.212 PubMedCrossRefGoogle Scholar
  41. Ratcliff R (1988) Continuous versus discrete information processing: modeling accumulation of partial information. Psychol Rev 95:238–255. doi: 10.1037/0033-295x.95.2.238 PubMedCrossRefGoogle Scholar
  42. Ratcliff R, McKoon G (2008) The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput 20:873–922. doi: 10.1162/neco.2008.12-06-420 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ratcliff R, Rouder JN (1998) Modeling response times for two-choice decisions. Psychol Sci 9:347–356. doi: 10.1111/1467-9280.00067 CrossRefGoogle Scholar
  44. Ratcliff R, Smith PL (2004) A comparison of sequential sampling models for two-choice reaction time. Psychol Rev 111:333–367. doi: 10.1037/0033-295x.111.2.333 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Rodríguez-Gironés MA, Kacelnik A (1998) Response latencies in temporal bisection: implications for timing models. In: De Keyser V, D’Ydewalle G, Vandierendonck A (eds) Time and the dynamic control of behavior. Hogrefe & Huber, Seattle, pp 51–70Google Scholar
  46. Simen P, Contreras D, Buck C, Hu P, Holmes P, Cohen JD (2009) Reward rate optimization in two-alternative decision making: empirical tests of theoretical predictions. J Exp Psychol Hum Percept Perform 35:1865–1897. doi: 10.1037/a0016926 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Simen P, Balcı F, deSouza L, Cohen JD, Holmes P (2011) A model of interval timing by neural integration. J Neurosci 31:9238–9253. doi: 10.1523/JNEUROSCI.3121-10.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Simen P, Rivest F, Ludvig EA, Balcı F, Killeen P (2013) Timescale invariance in the pacemaker-accumulator family of timing models. Timing Time Percept 1:159–188. doi: 10.1163/22134468-0000201 CrossRefGoogle Scholar
  49. Stubbs DA (1976) Response bias and the discrimination of stimulus duration. J Exp Anal Behav 25:243–250. doi: 10.1901/jeab.1976.25-243 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Tipples J (2015) Rapid temporal accumulation in spider fear: evidence from hierarchical drift diffusion modeling. Emotion. doi: 10.1037/emo0000079 PubMedGoogle Scholar
  51. Van Ravenzwaaij D, Mulder MJ, Tuerlinckx F, Wagenmakers EJ (2012) Do the dynamics of prior information depend on task context? An analysis of optimal performance and an empirical test. Front Psychol 3:132. doi: 10.3389/fpsyg.2012.00132 PubMedPubMedCentralGoogle Scholar
  52. Vandekerckhove J, Tuerlinckx F (2008) Diffusion model analysis with MATLAB: a DMAT primer. Behav Res Methods 40:61–72. doi: 10.3758/brm.40.1.61 PubMedCrossRefGoogle Scholar
  53. Wearden JH (1992) Temporal generalization in humans. J Exp Psychol Anim Behav Process 18:134–144. doi: 10.1037/0097-7403.18.2.134 CrossRefGoogle Scholar
  54. Wearden JH, Ferrara A (1995) Stimulus spacing effects in temporal bisection by humans. Q J Exp Psychol B 48:289–310. doi: 10.1080/14640749508401454 PubMedGoogle Scholar
  55. Whitaker S, Lowe CF, Wearden JH (2008) When to respond? And how much? Temporal control and response output on mixed-fixed-interval schedules with unequally probable components. Behav Process 77:33–42. doi: 10.1016/j.beproc.2007.06.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PsychologyKoç UniversityIstanbulTurkey

Personalised recommendations