Animal Cognition

, Volume 18, Issue 4, pp 981–983 | Cite as

Risk should be objectively defined: reply to Zentall and Smith

Short Communication


Zentall and Smith (2014) have published a comment on Pelé and Sueur (Anim Cogn 16:543–556, 2013) in which they raise two issues, one about the definition of risk and a second concerning the optimality of decisions. When making a choice, subjects are faced not only with several possible alternatives but also with the risk of opting for an unsuitable choice which depends on several variables (context, internal state, knowledge and perception). Although it is true that animals might learn about their environment and adapt their decisions to the context and to their experience, strong constraints make some behavioural traits stable over individual lifetime and even generations. We therefore consider that experience has limited impact on the variability of temporal discounting. These behavioural traits make the difference between perceived and actual risk. If the perceived risk strongly differs from the actual risk, a decision should be considered as suboptimal. If we want to lead individual and collective cognition to a common decision science, it is crucial to use the same definitions for terms implied in decision-making.


Optimality Diffusion model Delay Risk Speed–accuracy trade-off Decision 


  1. Abbott KR, Sherratt TN (2011) The evolution of superstition through optimal use of incomplete information. Anim Behav 82:85–92. doi: 10.1016/j.anbehav.2011.04.002 CrossRefGoogle Scholar
  2. Beck J, Forstmeier W (2007) Superstition and belief as inevitable by-products of an adaptive learning strategy. Hum Nat 18:35–46. doi: 10.1007/BF02820845 CrossRefGoogle Scholar
  3. Bogacz R (2007) Optimal decision-making theories: linking neurobiology with behaviour. Trends Cogn Sci 11:118–125. doi: 10.1016/j.tics.2006.12.006 PubMedCrossRefGoogle Scholar
  4. Foster KR, Kokko H (2009) The evolution of superstitious and superstition-like behaviour. Proc R Soc B Biol Sci 276:31–37. doi: 10.1098/rspb.2008.0981 CrossRefGoogle Scholar
  5. Franks NR, Dornhaus A, Fitzsimmons JP, Stevens M (2003) Speed versus accuracy in collective decision making. Proc R Soc Lond B Biol Sci 270:2457–2463. doi: 10.1098/rspb.2003.2527 CrossRefGoogle Scholar
  6. Huk AC, Shadlen MN (2005) Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J Neurosci 25(45):10420–10436PubMedCrossRefGoogle Scholar
  7. Janson C, Byrne R (2007) What wild primates know about resources: opening up the black box. Anim Cogn 10:357–367. doi: 10.1007/s10071-007-0080-9 PubMedCrossRefGoogle Scholar
  8. Kacelnik A (2006) Meanings of rationality. In: Hurley S, Nudds M (eds) Rational animals?. Oxford University Press, OxfordGoogle Scholar
  9. Laude JR, Stagner JP, Zentall TR (2014) Suboptimal choice by pigeons may result from the diminishing effect of nonreinforcement. J Exp Psychol Anim Learn Cogn 40(1):12–21. doi: 10.1037/xan0000010 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Marshall JAR, Bogacz R, Dornhaus A et al (2009) On optimal decision-making in brains and social insect colonies. J R Soc Interface 6:1065–1074. doi: 10.1098/rsif.2008.0511 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Nesse RM (2001) The smoke detector principle. Ann NY Acad Sci 935:75–85. doi: 10.1111/j.1749-6632.2001.tb03472.x PubMedCrossRefGoogle Scholar
  12. Pelé M, Sueur C (2013) Decision-making theories: linking the disparate research areas of individual and collective cognition. Anim Cogn 16:543–556. doi: 10.1007/s10071-013-0631-1 PubMedCrossRefGoogle Scholar
  13. Pyritz LW, King AJ, Sueur C, Fichtel C (2011) Reaching a consensus: terminology and concepts used in coordination and decision-making research. Int J Primatol. doi: 10.1007/s10764-011-9524-9 Google Scholar
  14. Roitman JD, Shadlen MN (2002) Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J Neurosci 22:9475–9489PubMedGoogle Scholar
  15. Shapiro MS, Siller S, Kacelnik A (2008) Simultaneous and sequential choice as a function of reward delay and magnitude: normative, descriptive and process-based models tested in the European Starling (Sturnus vulgaris). J Exp Psych Anim Behav Proc 34:75–93CrossRefGoogle Scholar
  16. Stagner JP, Zentall TR (2010) Suboptimal choice behavior by pigeons. Psychon Bull Rev 17:412–416. doi: 10.3758/PBR.17.3.412 PubMedCrossRefGoogle Scholar
  17. Sueur C, King AJ, Pelé M, Petit O (2013) Fast and accurate decisions as a result of scale-free network properties in two primate species. In: Proceedings of the European conference on complex systems 2012, Springer, pp 579–584Google Scholar
  18. Trimmer PC, Houston AI, Marshall JAR, Bogacz R, Paul ES, Mendl MT, McNamara JM (2008) Mammalian choices: combining fast-but-inaccurate and slow-but-accurate decision-making systems. Proc R Soc B 275:2353–2361PubMedCentralPubMedCrossRefGoogle Scholar
  19. Zentall TR, Stagner J (2011) Maladaptive choice behaviour by pigeons: an animal analogue and possible mechanism for gambling (sub-optimal human decision-making behaviour). Proc R Soc B Biol Sci 278:1203–1208. doi: 10.1098/rspb.2010.1607 CrossRefGoogle Scholar
  20. Zentall TR, Smith AP (2014) Risk should be objectively defined: comment on Pelé and Sueur. Animal Cognit 17(6):1433–1436CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Département Ecologie, Physiologie et EthologieCentre National de la Recherche ScientifiqueStrasbourg CedexFrance
  2. 2.Institut Pluridisciplinaire Hubert CurienUniversité de StrasbourgStrasbourg CedexFrance
  3. 3.Unit of Social EcologyUniversité Libre de BruxellesBrusselsBelgium
  4. 4.EthobiosciencesResearch and Consultancy Agency in Animal Wellbeing and BehaviourStrasbourg CedexFrance

Personalised recommendations