Animal Cognition

, Volume 18, Issue 1, pp 39–51 | Cite as

“Shall two walk together except they be agreed?” Spatial behavior in rat dyads

  • Omri Weiss
  • Elad Segev
  • David EilamEmail author
Original Paper


When animals explore an unfamiliar environment, they gather information that enables them to form a cognitive representation of that environment and to use it subsequently in traveling there. In the present study, rats were tested in a large arena as singles, then in dyads, and finally, again as singles, in order to examine the effect of the social environment on exploration. Traveling in dyads facilitated exploration compared to the behavior of the same rats when they explored alone. Specifically, each rat in a dyad traveled a greater distance with higher velocity and took wider turns compared to its lone traveling. Moreover, rats in dyads spent a long time together, shared a home base, and when traveling in the same direction, one rat was leading the other. In addition to exploring the same locations, leaders explored more “private” locations, not visited by the other rat. Features of the dyad behavior were carried over to the behavior of the same rats when tested as individuals, after the dyad trial. Compared to singles, dyads represent the first step toward grouping, and it is suggested that the conspicuous change between the behavior of a rat as single compared to its behavior when in a dyad should be greater than any further changes that may occur in spatial cognitive behavior of triads, quartets, or larger groups. In other words, while the present changes in spatial cognition observed in dyads represent a small step toward grouping, they are a giant leap for the individual.


Spatial representation Exploration Social environment Social cognition 



This study was supported by the Israel Science Foundation Grant 230/13 to DE. We are grateful to Naomi Paz for language editing, and to Shahaf Weiss and Pazit Zadicario for their support in experimentation and analysis. D.E. is a Visiting Professor at the Department of OTANES, University of South Africa.

Ethical standards

This study and the maintenance conditions for the rats were carried out under the regulations and approval of the Institutional Committee for Animal Experimentation at Tel-Aviv University (permit # L-14-026).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Spatial behavior in rat dyad. This videoclip illustrates how a rat dyad explores an unfamiliar environment, with attention primarily directed to the partner. In traveling rats take wide turns while following one another. Note that arena size is 6 × 5.6 m and therefore the rats move far from one another, but always turn to re-approach their partner (MPG 15386 kb)


  1. Beck CHM, Chow HL (1984) Solitary and social behavior of male rats in the open-field. Physiol Behav 32:941–944PubMedCrossRefGoogle Scholar
  2. Ben-Ami Bartal I, Decety J, Mason P (2011) Empathy and pro-social behavior in rats. Science 334:1427–1430. doi: 10.1126/science.1210789 PubMedCrossRefGoogle Scholar
  3. Ben-Yehoshua D, Yaski O, Eilam D (2011) Spatial behavior: the impact of global and local geometry. Anim Cogn 14:341–350. doi: 10.1007/s10071-010-0368-z PubMedCrossRefGoogle Scholar
  4. Brown MF (2011) Social influences on rat spatial choice. Comp Cogn Behav Rev 6:5–23. doi: 10.3819/ccbr.2011.6002 CrossRefGoogle Scholar
  5. Brown MF, Farley RF, Lorek EJ (2007) Remembrance of places you passed: social spatial working memory in rats. J Exp Psychol Anim Behav Process 33:213–224. doi: 10.1037/0097-7403.33.3.213 PubMedCrossRefGoogle Scholar
  6. Brown MF, Knight-Green MB, Lorek EJ et al (2008) Social working memory: memory for another rat’s spatial choices can increase or decrease choice tendencies. Learn Behav 36:327–340. doi: 10.3758/LB.36.4.327 PubMedCrossRefGoogle Scholar
  7. Brown MF, Prince T-MN, Doyle KE (2009) Social effects on spatial choice in the radial arm maze. Learn Behav 37:269–280. doi: 10.3758/LB.37.3.269 PubMedCrossRefGoogle Scholar
  8. Cheney DL, Seyfarth RM (1992) How monkeys see the world: inside the mind of another species. The University of Chicago Press, ChicagoGoogle Scholar
  9. Cheng K (1986) A purely geometric module in the rat’s spatial representation. Cognition 23:149–178. doi: 10.1016/0010-0277(86)90041-7 PubMedCrossRefGoogle Scholar
  10. Cheng K (2005) Reflections on geometry and navigation. Connect Sci 17:5–21. doi: 10.1080/09540090500138077 CrossRefGoogle Scholar
  11. Cheng K (2008) Whither geometry? Troubles of the geometric module. Trends Cogn Sci 12:355–361. doi: 10.1016/j.tics.2008.06.004 PubMedCrossRefGoogle Scholar
  12. Cheng K, Gallistel CR (2005) Shape parameters explain data from spatial transformations: comment on Pearce et al (2004) and Tommasi & Polli (2004). J Exp Psychol Anim Behav Process 31:254–259; discussion 260–261. doi: 10.1037/0097-7403.31.2.254
  13. Cheng K, Newcombe NS (2005) Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychon Bull Rev 12:1–23. doi: 10.3758/BF03196346 PubMedCrossRefGoogle Scholar
  14. Clark BJ, Hamilton DA, Whishaw IQ (2006) Motor activity (exploration) and formation of home bases in mice (C57BL/6) influenced by visual and tactile cues: modification of movement distribution, distance, location, and speed. Physiol Behav 87:805–816. doi: 10.1016/j.physbeh.2006.01.026 PubMedCrossRefGoogle Scholar
  15. Clayton N, Dally J, Emery N (2008) Social influences on foraging by rooks (Corvus frugilegus). Behaviour 145:1101–1124. doi: 10.1163/156853908784474470 CrossRefGoogle Scholar
  16. Couzin ID, Krause J, James R et al (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218:1–11. doi: 10.1006/yjtbi.3065 PubMedCrossRefGoogle Scholar
  17. Eilam D, Golani I (1989) Home base behavior of rats (Rattus norvegicus) exploring a novel environment. Behav Brain Res 34:199–211PubMedCrossRefGoogle Scholar
  18. File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharmacol 463:35–53. doi: 10.1016/S0014-2999(03)01273-1 PubMedCrossRefGoogle Scholar
  19. Galef BG, Lee WY, Whiskin EE (2005) Lack of interference in long-term memory for socially learned food preferences in rats (Rattus norvegicus). J Comp Psychol 119:131–135. doi: 10.1037/0735-7036.119.2.131 PubMedCrossRefGoogle Scholar
  20. Golani I, Benjamini Y, Eilam D (1993) Stopping behavior: constraints on exploration in rats (Rattus norvegicus). Behav Brain Res 53:21–33PubMedCrossRefGoogle Scholar
  21. Griffiths RA, Foster JP (1998) The effect of social interactions on tadpole activity and growth in the British anuran amphibians (Bufo bufo, B. calamita, and Rana temporaria). J Zool 245:431–437CrossRefGoogle Scholar
  22. Haimovici A, Wang Y, Cohen E, Mintz M (2001) Social attraction between rats in open field: long-term consequences of kindled seizures. Brain Res 922:125–134PubMedCrossRefGoogle Scholar
  23. Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31:295–311PubMedCrossRefGoogle Scholar
  24. Hills TT (2006) Animal foraging and the evolution of goal-directed cognition. Cogn Sci 30:3–41. doi: 10.1207/s15516709cog0000_50 PubMedCrossRefGoogle Scholar
  25. Hines DJ, Whishaw IQ (2005) Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats. Eur J Neurosci 22:2363–2375. doi: 10.1111/j.1460-9568.2005.04412.x PubMedCrossRefGoogle Scholar
  26. Hughes RN (1969) Social facilitation of locomotion and exploration in rats. Br J Psychol 60:385–388. doi: 10.1111/j.2044-8295.1969.tb01211.x PubMedCrossRefGoogle Scholar
  27. Izhar R, Eilam D (2010) Together they stand: a life-threatening event reduces individual behavioral variability in groups of voles. Behav Brain Res 208:282–285. doi: 10.1016/j.bbr.2009.11.045 PubMedCrossRefGoogle Scholar
  28. Keller MR, Brown MF (2011) Social effects on rat spatial choice in an open field task. Learn Motiv 42:123–132. doi: 10.1016/j.lmot.2010.12.004 CrossRefGoogle Scholar
  29. King AJ, Sueur C, Huchard E, Cowlishaw G (2011) A rule-of-thumb based on social affiliation explains collective movements in desert baboons. Anim Behav 82:1337–1345. doi: 10.1016/j.anbehav.2011.09.017 CrossRefGoogle Scholar
  30. Krause J (1993) The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus cephalus): a field study. Oecologia 93:356–359CrossRefGoogle Scholar
  31. Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, OxfordGoogle Scholar
  32. Lathe R (2004) The individuality of mice. Genes Brain Behav 3:317–327PubMedCrossRefGoogle Scholar
  33. Loewen I, Wallace DG, Whishaw IQ (2005) The development of spatial capacity in piloting and dead reckoning by infant rats: use of the huddle as a home base for spatial navigation. Dev Psychobiol 46:350–361. doi: 10.1002/dev.20063 PubMedCrossRefGoogle Scholar
  34. Magurran AE, Pitcher TJ (1983) Foraging, timidity and shoal size in minnows and goldfish. Behav Ecol Sociobiol 12:147–152CrossRefGoogle Scholar
  35. Meaney MJ, Stewart J (1979) Environmental factors influencing the affiliative behavior of male and female rats (Rattus norvegicus). Anim Learn Behav 7:397–405. doi: 10.3758/BF03209692 CrossRefGoogle Scholar
  36. Menzel EW (1966) Responsiveness to objects in free-ranging Japanese monkeys. Behaviour 26:130–150. doi: 10.1163/156853966X00065 PubMedCrossRefGoogle Scholar
  37. Menzel EW (1971) Communication about the environment in a group of young chimpanzees. Folia Primatol 15:220–232. doi: 10.1159/000155381 PubMedCrossRefGoogle Scholar
  38. Menzel EW (1978) Cognitive mapping in chimpanzees. In: Hulse SH, Fowler H, Honig Wk (eds) Cogn Process Anim Behav. Lawrence Erlbaum Associates, pp 375–422Google Scholar
  39. Miller M, Eilam D (2011) Decision making at a crossroad: why to go straight ahead, retrace a path, or turn sideways? Anim Cogn 14:11–20. doi: 10.1007/s10071-010-0338-5 PubMedCrossRefGoogle Scholar
  40. Mintz M, Russig H, Lacroix L, Feldon J (2005) Sharing of the home base: a social test in rats. Behav Pharmacol 16:227–236PubMedCrossRefGoogle Scholar
  41. Moran G, Fentress JC, Golani I (1981) A description of relational patterns of movement during “ritualized fighting” in wolves. Anim Behav 29:1146–1165CrossRefGoogle Scholar
  42. O’keefe J, Nadel L (1978) The hippocampus as a cognitive map, vol 3, pp 483–484Google Scholar
  43. Partridge BL, Pitcher TJ, Gables C (1980) The sensory basis of fish schools: relative roles of lateral line and vision. J Comp Physiol 135:315–325CrossRefGoogle Scholar
  44. Péron F, John M, Sapowicz S et al (2013) A study of sharing and reciprocity in grey parrots (Psittacus erithacus). Anim Cogn 16:197–210. doi: 10.1007/s10071-012-0564-0 PubMedCrossRefGoogle Scholar
  45. Portugali J, Yaski O, Eilam D (2011) Arena geometry and path shape: when rats travel in straight or in circuitous paths? Behav Brain Res 225:449–454. doi: 10.1016/j.bbr.2011.07.055 PubMedCrossRefGoogle Scholar
  46. Schuett W, Dall SRX (2009) Sex differences, social context and personality in zebra finches, (Taeniopygia guttata). Anim Behav 77:1041–1050. doi: 10.1016/j.anbehav.2008.12.024 CrossRefGoogle Scholar
  47. Schuster R (2001) An animal model of cooperating dyads: methodological and theoretical issues. Mex J Behav Anal 27:165–200Google Scholar
  48. Schuster R (2002) Cooperative coordination as a social behavior experiments with an animal model. Hum Nat 13:47–83. doi: 10.1007/s12110-002-1014-5 CrossRefGoogle Scholar
  49. Shemesh Y, Sztainberg Y, Forkosh O et al (2013) High-order social interactions in groups of mice. Elife 2:1–19. doi: 10.7554/eLife.00759 CrossRefGoogle Scholar
  50. Shi Q, Ishii H, Kinoshita S et al (2013) Modulation of rat behaviour by using a rat-like robot. Bioinspir Biomim 8:1–10. doi: 10.1088/1748-3182/8/4/046002 CrossRefGoogle Scholar
  51. Silverman JL, Yang M, Lord C, Crawley JN (2010) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11:490–502. doi: 10.1038/nrn2851 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Stöwe M, Bugnyar T, Loretto MC et al (2006) Novel object exploration in ravens (Corvus corax): effects of social relationships. Behav Process 73:68–75. doi: 10.1016/j.beproc.2006.03.015 CrossRefGoogle Scholar
  53. Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208PubMedCrossRefGoogle Scholar
  54. Ward AJW (2011) Social facilitation of exploration in mosquitofish (Gambusia holbrooki). Behav Ecol Sociobiol 66:223–230. doi: 10.1007/s00265-011-1270-7 CrossRefGoogle Scholar
  55. Webster MM, Ward AJW (2011) Personality and social context. Biol Rev Camb Philos Soc 86:759–773. doi: 10.1111/j.1469-185X.2010.00169.x PubMedCrossRefGoogle Scholar
  56. Wilson EO (1975) Some central problems of sociobiology. Soc Sci Inf 14:5–18. doi: 10.1177/053901847501400601 CrossRefGoogle Scholar
  57. Yaski O, Eilam D (2008) How do global and local geometries shape exploratory behavior in rats? Behav Brain Res 187:334–342. doi: 10.1016/j.bbr.2007.09.027 PubMedCrossRefGoogle Scholar
  58. Yaski O, Portugali J, Eilam D (2011) City rats: insight from rat spatial behavior into human cognition in urban environments. Anim Cogn 14:655–663. doi: 10.1007/s10071-011-0400-y PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of ZoologyTel-Aviv UniversityRamat-Aviv, Tel-AvivIsrael
  2. 2.Department of Applied MathematicsHolon Institute of TechnologyHolonIsrael

Personalised recommendations