Animal Cognition

, Volume 18, Issue 1, pp 19–37 | Cite as

Who would have thought that ‘Jaws’ also has brains? Cognitive functions in elasmobranchs

Review

Abstract

Adaptation of brain structures, function and higher cognitive abilities most likely have contributed significantly to the evolutionary success of elasmobranchs, but these traits remain poorly studied when compared to other vertebrates, specifically mammals. While the pallium of non-mammalian vertebrates lacks the mammalian neocortical organization responsible for all cognitive abilities of mammals, several behavioural and neuroanatomical studies in recent years have clearly demonstrated that elasmobranchs, just like teleosts and other non-mammalian vertebrates, can nonetheless solve a multitude of cognitive tasks. Sharks and rays can learn and habituate, possess spatial memory; can orient according to different orientation strategies, remember spatial and discrimination tasks for extended periods of time, use tools; can imitate and learn from others, distinguish between conspecifics and heterospecifics, discriminate between either visual objects or electrical fields; can categorize visual objects and perceive illusory contours as well as bilateral symmetry. At least some neural correlates seem to be located in the telencephalon, with some pallial regions matching potentially homologous areas in other vertebrates where similar functions are being processed. Results of these studies indicate that the assessed cognitive abilities in elasmobranchs are as well developed as in teleosts or other vertebrates, aiding them in fundamental activities such as food retrieval, predator avoidance, mate choice and habitat selection.

Keywords

Learning Memory Shark Chondrichthyes Rays 

Notes

Acknowledgments

I am grateful to H. Bleckmann and M. Mogdans for helpful suggestions on the manuscript.

References

  1. Abellán A, Desfilis E, Medina L (2013) The olfactory amygdala in amniotes: an evo-devo approach. Anat Rec 296:1317–1332Google Scholar
  2. Agrillo C, Petrazzini MEM, Dadda M (2013) Illusionary patterns are fishy for fish, too. Front Neural Circuits 7:137. doi: 10.3389/fncir.2013.00137 PubMedCentralPubMedGoogle Scholar
  3. Altbacker V, Csanyl V (1990) The role of eyespots in predator recognition and antipredatory behavior of the paradise fish, Macropodus-opercularis L. Ethology 85:51–57Google Scholar
  4. Aronson LR (1951) Orientation and jumping behavior in the gobiid fish, Bathygobius soporator. Am Mus Novit 1486:1–22Google Scholar
  5. Aronson LR (1971) Further studies on orientation and jumping behaviour in the gobiid fish, Bathygobius Soporator. In: Adler HE (ed) Orientation: sensory bases. Ann NY Acad Sci 188:378–392Google Scholar
  6. Aronson LR, Aronson FR, Clark E (1967) Instrumental conditioning and light–dark discrimination in young nurse sharks. Bull Mar Sci 17:249–256Google Scholar
  7. Atoji Y, Wild JM (2006) Anatomy of the avian hippocampal formation. Rev Neurosci 17:3–16PubMedGoogle Scholar
  8. Banner A (1972) Use of sound in predation by young lemon sharks, Negaprion brevirostris (Poey). Bull Mar Sci 22:251–283Google Scholar
  9. Bauchot R, Platel R, Ridet JM (1976) Brain-body weight relationships in Selachii. Copeia 2:305–310Google Scholar
  10. Berry JW (1968) Ecology, perceptual development and the Muller–Lyer illusion. Br J Psychol 59:205–210PubMedGoogle Scholar
  11. Beukema JJ (1970) Angling experiments with carp (Cyprinus carpio L.) II. Decreasing catchability through one-trial learning. Neth J Zool 20:81–92Google Scholar
  12. Bindra D, Anchel H (1963) Immobility as an avoidance response, and its disruption by drugs. J Exp Anal Behav 6:213–218PubMedCentralPubMedGoogle Scholar
  13. Brown C (2001) Familiarity with the test environment improves the escape responses in the crimson spotted rainbowfish, Melanotaenia duboulayi. Anim Cogn 4:109–113Google Scholar
  14. Brown C (2012) Tool use in fishes. Fish Fish 13:105–115Google Scholar
  15. Brown C, Laland K, Krause J (2011) Fish cognition and behavior, 2nd edn. Blackwell Publishing Ltd, OxfordGoogle Scholar
  16. Bshary R (2006) Machiavellian intelligence in fishes. In: Brown C, Laland K, Krause J (eds) Fish cognition and behavior. Blackwell Scientific, Oxford, pp 223–242Google Scholar
  17. Bshary R, Wickler W, Fricke H (2002) Fish cognition: a primate’s eye view. Anim Cogn 5:1–23PubMedGoogle Scholar
  18. Burt de Perera T, Garcia M (2003) Amarillo fish (Girardinichthys multiradiatus) use visual landmarks to orient in space. Ethology 109:341–350Google Scholar
  19. Burt de Perera T, Holbrook RI (2011) Three-dimensional spatial cognition: information in the vertical dimension overrides information from the horizontal. Anim Cogn 14:613–619PubMedGoogle Scholar
  20. Burt de Perera T, Holbrook RI (2012) Three-dimensional spatial representation in freely swimming fish. Cogn Proc 13:107–111Google Scholar
  21. Butler AB, Reiner A, Karten HJ (2011) Evolution of the amniote pallium and the origins of mammalian neocortex. Ann N Y Acad Sci 1225:14–27PubMedCentralPubMedGoogle Scholar
  22. Chandroo K, Duncan IJ, Moccia R (2004) Can fish suffer? Perspectives on sentience, pain, fear and stress. Appl Anim Behav Sci 86:225–250Google Scholar
  23. Chittka L, Skorupski P (2011) Information processing in miniature brains. Proc R Soc B 278:885–888PubMedCentralPubMedGoogle Scholar
  24. Clark E (1959) Instrumental conditioning of lemon sharks. Science 130:217–218PubMedGoogle Scholar
  25. Clark E (1961) Visual discrimination in lemon sharks. Tenth Pac Sci Congr Honol 10:175–176Google Scholar
  26. Clark E (1963) The maintenance of sharks in captivity, with a report on their instrumental conditioning. In: Gilbert PW (ed) Sharks and survival. DC Heath, Boston, pp 115–150Google Scholar
  27. Collin SP (2012) The neuroecology of cartilaginous fishes: sensory strategies for survival. Brain Behav Evol 80:80–96PubMedGoogle Scholar
  28. Compagno LJV (1999) Systematics and body form. In: Hamlett WC (ed) Sharks, skates, and rays: the biology of elasmobranch fishes. Johns Hopkins University Press, Baltimore, pp 1–42Google Scholar
  29. Coolen I, Bergen YV, Day RL, Laland KN (2003) Species difference in adaptive use of public information in sticklebacks. Proc R Soc Lond B 270:2413–2419Google Scholar
  30. Costa SS, Andrade R, Carneiro LA, Goncalves EJ, Kotrschal K, Oliveira RF (2011) Sex differences in the dorsolateral telencephalon correlate with home ranges in blenniid fish. Brain Behav Evol 77:55–64PubMedGoogle Scholar
  31. Coyer J (1995) Use of a rock as an anvil for breaking scallops by the yellowhead wrasse, Halichoeres garnoti (Labridae). Bull Mar Sci 57:548–549Google Scholar
  32. Croy MI, Hughes RN (1991) The role of learning and memory in the feeding behaviour of the fifteen-spined stickleback, Spinachia spinachia L. Anim Behav 41:149–159Google Scholar
  33. Csanyi V (1985) Ethological analysis of predator avoidance by the paradise fish (Macropodus-opercularis L). 1. Recognition and learning of predators. Behaviour 92:227–240Google Scholar
  34. Csanyi V (1986) Ethological analysis of predator avoidance by the paradise fish (Macropodus-opercularis L). 2. Key stimuli in avoidance-learning. Anim Learn Behav 14:101–109Google Scholar
  35. Cuthill IC, Kacelnik A, Krebs JR, Haccou P, Iwasa Y (1990) Starlings exploiting patches: the effect of recent experience on foraging decisions. Anim Behav 40:625–640Google Scholar
  36. Darmaillacq AS, Dickel L, Rahmani N, Shashar N (2011) Do reef fish, Variola louti and Scarus niger, perform amodal completion? Evidence from a field study. J Comp Psychol 125:273PubMedGoogle Scholar
  37. Demski LS (2013) The pallium and mind/behavior relationships in teleost fishes. Brain Behav Evol 82:31–44PubMedGoogle Scholar
  38. Desjardins JK, Fernald RD (2011) What do fish make of mirror images? Biol Lett 6:744–747Google Scholar
  39. Dicke U, Roth G (2007) Evolution of the amphibian nervous system. In: Kaas JH (ed) Evolution of nervous systems, vol 2. Academic Press, Oxford, pp 61–124Google Scholar
  40. Dittman AH, Quinn TP (1996) Homing in Pacific salmon: mechanisms and ecological basis. J Exp Biol 199:83–91PubMedGoogle Scholar
  41. Douglas RH, Eva J, Guttridge N (1988) Size constancy in goldfish (Carassius auratus). Behav Brain Res 30:37–42PubMedGoogle Scholar
  42. Dugatkin LA (1992) Sexual selection and imitation: females copy the mate choice of others. Am Nat 139:1384–1389Google Scholar
  43. Dugatkin LA, Wilson DS (1992) The prerequisites of strategic behavior in the bluegill sunfish. Anim Behav 44:223–230Google Scholar
  44. Durán E, Ocana FM, Gómez A, Jiménez-Moya F, Broglio C, Rodríguez F (2008) Telencephalon ablation impairs goldfish allocentric spatial learning in a “hole-board” task. Acta Neurobiol Exp 68:519–525Google Scholar
  45. Durán E, Ocana FM, Broglio C, Rodríguez F, Salas C (2010) Lateral but not medial telencephalic pallium ablation impairs the use of goldfish spatial allocentric strategies in a “hole-board” task. Behav Brain Res 214:480–487PubMedGoogle Scholar
  46. Ebbesson SOE (1972) New insights into the organization of the shark brain. Comp Biochem Physiol 42:121–129Google Scholar
  47. Ebbesson SOE (1980) On the organization of the telencephalon in elasmobranchs. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum Press, New York, pp 1–16Google Scholar
  48. Ebbesson LOE, Braithwaite VA (2012) Environmental effects on fish neural plasticity and cognition. J Fish Biol 81:2151–2174PubMedGoogle Scholar
  49. Economakis AE, Lobel PS (1998) Aggregation behavior of the grey reef shark, Carcharhinus amblyrhynchos, at Johnston Atoll, Central Pacific Ocean. Environ Biol Fish 51:129–139Google Scholar
  50. Edren SMC, Gruber SH (2005) Homing ability of young lemon sharks, Negaprion brevirostris. Environ Biol Fish 72:267–281Google Scholar
  51. Finger T (2008) Sorting food from stones: the vagal taste system in goldfish, Carassius auratus. J Comp Physiol A 194:135–143Google Scholar
  52. Flood NC, Overmier JB, Savage GE (1976) Teleost telencephalon and learning: an interpretive review of data and hypotheses. Physiol Behav 16:783–798PubMedGoogle Scholar
  53. Font E, García-Verdugo JM, Desfilis E, Pérez-Cañellas M (1995) Neuron-glia interrelations during 3-acetylpyridine-induced degeneration and regeneration in the adult lizard brain. In: Vernadakis A, Roots B (eds) Neuron-glia interrelations during phylogeny: II. Plasticity and regeneration. Humana, Totowa, pp 275–302Google Scholar
  54. Fricke H (1971) Fische als Feinde tropischer Seeigel. Mar Biol 9:328–338Google Scholar
  55. Fricke H (1974) Ökoethologie des monogamen Anemonenfisches Amphiprion bicincthus. Z Tierpsychol 36:429–512PubMedGoogle Scholar
  56. Fukumori K, Okuda N, Yamaoka K, Yanagisawa Y (2009) Remarkable spatial memory in a migratory cardinal fish. Anim Cogn 13:385–389PubMedGoogle Scholar
  57. Fuss T, Bleckmann H, Schluessel V (2014a) Place learning prior to and after telencephalon ablation in bamboo and coral cat sharks (Chiloscyllium griseum and Atelomycterus marmoratus). J Comp Physiol A 200:37–52Google Scholar
  58. Fuss T, Bleckmann H, Schluessel V (2014b) The shark Chiloscyllium griseum can orient using turn responses before and after partial telencephalon ablation. J Comp Physiol A 200:19–35Google Scholar
  59. Fuss T, Bleckmann H, Schluessel V (2014c) Visual discrimination abilities in grey bamboo sharks (Chiloscyllium griseum). Zoology 117:104–111PubMedGoogle Scholar
  60. Fuss T, Bleckmann H, Schluessel V (2014d) The brain creates illusions not just for us: turns out sharks (Chiloscyllium griseum) can ‘see the magic’ as well. Front Neural Circuits 8:24. doi: 10.3389/fncir.2014.00024 PubMedCentralPubMedGoogle Scholar
  61. Gierszewski S, Bleckmann H, Schluessel V (2013) Cognitive abilities in Malawi cichlids (Pseudotropheus sp.): matching-to-sample and image/mirror-image discriminations. PLoS One 8:e57363PubMedCentralPubMedGoogle Scholar
  62. Giurfa M (2013) Cognition with few neurons: higher-order learning in insects. Trends Neurosci 36:285–294PubMedGoogle Scholar
  63. Goldman M, Shapiro S (1979) Matching-to-sample and oddity-from-sample in goldfish. J Exp Anal Behav 31:259–266PubMedCentralPubMedGoogle Scholar
  64. Goldsmith M (1914) Les reactions physiologiques et psychiques des poisson. Bull Inst Gen Psychol 14:97–228Google Scholar
  65. Graeber RC (1978) Behavioral studies correlated with central nervous system integration of vision in sharks. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. Office of Naval Research, Arlington, pp 195–226Google Scholar
  66. Graeber RC (1980) Telencephalic function in elasmobranchs, a behavioral perspective. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum Press, New York, pp 17–39Google Scholar
  67. Graeber RC, Ebbesson SO (1972) Visual discrimination learning in normal and tectal-ablated nurse sharks (Ginglymostoma cirratum). Comp Biochem Physiol 42:131–139Google Scholar
  68. Graeber RC, Ebbesson SO, Jane JA (1973) Visual discrimination in sharks without optic tectum. Science 180:413–415PubMedGoogle Scholar
  69. Graeber RC, Schroeder DM, Jane JA, Ebbesson SOE (1978) Visual discrimination following partial telencephalic in nurse sharks (Ginglymostoma cirratum). J Comp Neurol 180:325–344PubMedGoogle Scholar
  70. Griffith SW, Magurran AE (1997) Familiarity in schooling fish: how long does it take to acquire? Anim Behav 53:945–949Google Scholar
  71. Griffith SW, Ward AJW (2006) Learned recognition of conspecifics. In: Brown C, Laland K, Krause J (eds) Fish cognition and behaviour. Blackwell Publishing Ltd, Oxford, pp 139–165Google Scholar
  72. Grill HJ, Norgren R (1978) Neurological tests and behavioral deficits in chronic thalamic and chronic decerebrate rats. Brain Res 142:299–312Google Scholar
  73. Grosenick L, Clement TS, Fernald RS (2007) Fish can infer social rank by observation alone. Nature 445:429–432PubMedGoogle Scholar
  74. Gruber SH, Cohen JL (1978) Visual systems of the elasmobranchs: state of the art 1960-1975. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates, and rays. US Government Printing Office, Washington, pp 11–116Google Scholar
  75. Gruber SH, Schneiderman N (1975) Classical conditioning of the nictitating membrane response of the lemon shark (Negaprion brevirostris). Behav Res Methods lnstrum 7:430–434Google Scholar
  76. Guttridge TL, Brown C (2014) learning and memory in the Port Jackson shark, Heterodontus portusjacksoni. Anim Cogn 17:415–425PubMedGoogle Scholar
  77. Guttridge TL, Gruber SH, Gledhill KS, Croft DP, Sims DW, Krause J (2009a) Social preferences of juvenile lemon sharks Negaprion brevirostris. Anim Behav 78:543–548Google Scholar
  78. Guttridge TL, Myrberg AM, Porcher IF, Sims DM, Krause J (2009b) The role of learning in shark behavior. Fish Fish 10:450–469Google Scholar
  79. Guttridge TL, Gruber SH, DiBattista JD, Feldheim KA et al (2011) Assortative interactions and leadership in a wild population of juvenile lemon sharks. Mar Ecol Prog Ser 423:235–245Google Scholar
  80. Guttridge TL, van Dijk S, Stamhuis EJ, Krause J, Gruber SH, Brown C (2013) Social learning in juvenile lemon sharks Negaprion brevirostris. Anim Cogn 16:55–64PubMedGoogle Scholar
  81. Heiligenberg W (1986) Jamming avoidance responses. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 613–649Google Scholar
  82. Helfman GS, Schultz ET (1984) Social transmission of behavioral traditions in a coral-reef fish. Anim Behav 32:379–384Google Scholar
  83. Herold C, Joshi I, Chehadi O, Hollmann M, Güntürkün O (2012) Plasticity in D1-like receptor expression is associated with different components of cognitive processes. PLoS One 7:e36484PubMedCentralPubMedGoogle Scholar
  84. Herter K (1929) Dressurversuche an Fischen. Z vgl Physiol 10:688–711Google Scholar
  85. Herter K (1930) Weitere Dressurversuche an Fische. Z vgl Physiol 11:730–748Google Scholar
  86. Heupel MR, Simpfendorfer CA (2005) Quantitative analysis of aggregation behaviour in juvenile blacktip sharks. Mar Biol 147:1239–1249Google Scholar
  87. Hofmann MH (2001) The role of the fish telencephalon in sensory information processing. In: Kapoor BG, Hara TJ (eds) Sensory biology of jawed fishes: new insights. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, pp 255–274Google Scholar
  88. Hueter RE, Mann DA, Maruska KP, Sisneros JA, Demski LS (2004) Sensory biology of elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC Press, Boca Raton, pp 325–368Google Scholar
  89. Hughes RN, Blight CM (2000) Two intertidal fish species use visual association learning to track the status of food patche in a radial maze. Anim Behav 59:613–621PubMedGoogle Scholar
  90. Jackson RL, Alexander J, Maier SF (1980) Learned helplessness, inactivity, and associative deficits: effects of inescapable shock on response choice escape learning. J Exp Psychol Anim Behav Proc 6:1–20Google Scholar
  91. Jacoby DMP, Busawon DS, Sims DW (2010) Sex and social networking: the influence of male presence on social structure of female sharkgroups. Behav Ecol 21:808–818Google Scholar
  92. Johnsson JI, Akerman A (1999) Watch and learn: preview of the fighting ability of opponents alters contest behaviour in rainbow trout. Anim Behav 56:771–776Google Scholar
  93. Jones A, Brown C, Gardener S (2011) Tool use in the spotted tuskfish, Choerodon schoenleinii. Coral Reefs 30:865Google Scholar
  94. Kaas JH (1987) The organization of the neocortex in mammals—implications for theories of brain function. Annu Rev Psychol 38:129–151PubMedGoogle Scholar
  95. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGraw-Hill, New YorkGoogle Scholar
  96. Kanizsa G (1974) Contours without gradients or cognitive contours? G Ital Psicol 1:93–113Google Scholar
  97. Karplus I, Algom D (1981) Visual cues for predator face recognition by reef fishes. J Comp Ethol 55:343–364Google Scholar
  98. Karplus I, Goren M, Algom D (1982) A preliminary experimental-analysis of predator face recognition by Chromis-caeruleus (Pisces, Pomacentridae). J Comp Ethol 58:53–65Google Scholar
  99. Karten HJ (2013) Neocortical evolution: neuronal circuits arise independently of lamination. Curr Biol 23:R12–R15PubMedGoogle Scholar
  100. Kelly JC, Nelson DR (1975) Hearing thresholds of the horn shark, Heterodontus francisci. J Acoust Soc Am 58:905–909PubMedGoogle Scholar
  101. Kendal JR, Rendell LR, Pike TW, Laland KN (2009) Nine-spined sticklebacks deploy a hill-climbing social learning strategy. Behav Ecol 20:238–244Google Scholar
  102. Kimber JA, Sims DW, Bellamy PH, Gill AB (2011) The ability of a benthic elasmobranch to discriminate between biological and artificial electric fields. Mar Biol 158:1–8Google Scholar
  103. Kimber JA, Sims DW, Bellamy PB, Gill AB (2014) Elasmobranch cognitive ability: using electroreceptive foraging behaviour to demonstrate learning, habituation and memory in a benthic shark. Anim Cogn 17:55–65PubMedGoogle Scholar
  104. Kleerekoper H, Timms AM, Westlake GF, Davy FB, Malar T, Anderson VM (1970) An analysis of locomotor behaviour of goldfish (Carassius auratus). Anim Behav 18:317–330PubMedGoogle Scholar
  105. Kleerekoper H, Matis I, Gensler P, Maynard P (1974) Exploratory behaviour of goldfish Carassius auratus. Anim Behav 22:124–132Google Scholar
  106. Klimley AP (1993) Highly directional swimming by scalloped hammerhead sharks, Sphyrna Lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic-field. Mar Biol 117:1–22Google Scholar
  107. Klimley AP, Nelson DR (1981) Schooling of the scalloped hammerhead shark, Sphyrna lewini, in the Gulf of California. Fish Bull 79:356–360Google Scholar
  108. Kotrschal A, Taborsky B (2010) Environmental change enhances cognitive abilities in fish. PLoS Biol 8:e1000351. doi: 10.1371/journal.pbio.1000351 PubMedCentralPubMedGoogle Scholar
  109. Kuba MJ, Byrne RA, Burghardt GM (2009) A new method for studying problem solving and tool use in stingrays (Potamotrygon castexi). Anim Cogn 13:507–513PubMedGoogle Scholar
  110. Laland KN, Williams K (1997) Shoaling generales social learning of foraging information in guppies. Anim Behav 53:1161–1169PubMedGoogle Scholar
  111. Lefebvre L (2013) Brains, innovations, tools and cultural transmission in birds, non-human primates, and fossil hominins. Front Hum Neurosci 7:245PubMedCentralPubMedGoogle Scholar
  112. Leung B, Forbes MR (1996) Fluctuating asymmetry in relation to stress and fitness: effects of trait type as revealed by meta-analysis. Ecoscience 3:400–413Google Scholar
  113. Lopez JC, Broglio C, Rodriguez F, Thinus-Blanc C, Salas C (2000) Reversal learning deficit in a spatial task but not in a cued one after telencephalic ablation in goldfish. Behav Brain Res 109:91–98PubMedGoogle Scholar
  114. López JC, Broglio C, Rodríguez F, Thinus-Blanc C, Salas C (1999) Multiple spatial learning strategies in goldfish (Carassius auratus). Anim Cogn 2:109–120Google Scholar
  115. Lucas JR, Brodin A, de Kort SR, Clayton NS (2004) Does hippocampal size correlate with the degree of caching specialisation? Proc R Soc Lond B 271:2423–2429Google Scholar
  116. Malyukova IV, Rakich L, Kovachevich N (1983) Conditioned motor reactions in free-living elasmobranchs and bony fishes. Neurosci Behav Physiol 13:482–485PubMedGoogle Scholar
  117. Maren S, Holt WG (2004) Hippocampus and Pavlovian fear conditioning in rats: muscimol infusions into the ventral, but not dorsal, hippocampus impair the acquisition of conditional freezing to an auditory conditional stimulus. Behav Neurosci 118:97–110PubMedGoogle Scholar
  118. Martínez-García F, Novejarque A, Lanuza E (2009) The evolution of the amygdala in vertebrates. In: Kaas J (ed) Evolutionary neuroscience. Elsevier, Amsterdam, pp 407–458Google Scholar
  119. Mathis A, Chivers DP, Smith RJF (1996) Cultural transmission of predator recognition in fishes: intraspecific and interspecific learning. Anim Behav 51:185–201Google Scholar
  120. Mazeroll AL, Montgomery WL (1995) Structure and organization of local migrations in brown surgeonfish (Acanthurus nigrofuscus). Ethology 99:89–106Google Scholar
  121. Mazzi D, Künzler R, Bakker TCM (2003) Female preference for symmetry in computer-animated three-spined sticklebacks, Gasterosteus aculeatus. Behav Ecol Sociobiol 54:156–161Google Scholar
  122. Mazzi D, Künzler R, Largiadèr CR, Bakker TCM (2004) Inbreeding affects female preference for symmetry in computer-animated sticklebacks. Behav Genet 34:417–424PubMedGoogle Scholar
  123. McManus MW, Johnson CS, Jeffries MM (1984) Training nurse sharks using operant conditioning. Naval Ocean systems Center Tech Rep No 977Google Scholar
  124. Menzel R (2012) The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 13:758–768PubMedGoogle Scholar
  125. Merry JW, Morris MR (2001) Preference for symmetry in swordtail fish. Anim Behav 61:477–479Google Scholar
  126. Mervis CB, Rosch E (1981) Categorization of natural objects. Annu Rev Psychol 32:89–115Google Scholar
  127. Meyer CG, Holland K, Papastamatiou YP (2005) Sharks can detect changes in the geomagnetic field. J R Soc Interface 2:129–130PubMedCentralPubMedGoogle Scholar
  128. Meyer CC, Papastamatiou YP, Holland KN (2010) A multiple instrument approach to quantifying the movement patterns and habitat use of tiger (Galeocerdo cuvier) and Galapagos sharks (Carcharhinus galapagensis) at French Frigate Shoals, Hawaii. Mar Biol 157:1857–1868Google Scholar
  129. Milinski M, Pfluger D, Kulling D, Kettler R (1990a) Do sticklebacks cooperate repeatedly in reciprocal pairs. Behav Ecol Sociobiol 27:17–21Google Scholar
  130. Milinski M, Kuelling D, Kettler R (1990b) Tit for Tat: sticklebacks (Gasterosteus aculeatus) “trusting” a cooperating partner. Behav Ecol 1:7–11Google Scholar
  131. Moreno N, Gonzalez A (2007) Regionalization of the telencephalon in urodele amphibians and its bearing on the identification of the amygdaloid complex. Front Neuroanat 1:1–12PubMedCentralPubMedGoogle Scholar
  132. Morris MR, Casey K (1998) Female swordtail fish prefer symmetrical sexual signal. Anim Behav 55:33–39PubMedGoogle Scholar
  133. Mueller T, Wullimann MF (2009) An evolutionary interpretation of teleost forebrain anatomy. Brain Behav Evol 74:30–42PubMedGoogle Scholar
  134. Mueller T, Wullimann MF, Guo S (2008) Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression. J Comp Neurol 507:1245–1257PubMedGoogle Scholar
  135. Myrberg AA, Gruber AH (1974) Behavior of bonnethead shark, Sphyrna tiburo. Copeia 1974:358–374Google Scholar
  136. Myrberg AA, Riggio RJ (1985) Acoustically mediated individual recognitions by a coral-reef fish (Pomacentrus-partitus). Anim Behav 33:411–416Google Scholar
  137. Nams VO (2006) Detecting oriented movement of animals. Anim Behav 72:1197–1203Google Scholar
  138. Nelson DR (1967) Hearing thresholds, frequency discriminations and acoustic orientation in the lemon shark, Negaprion brevirostris (Poey). Bull Mar Sci 17:741–768Google Scholar
  139. Nieder A (2002) Seeing more than meets the eye: processing of illusory contours in animals. J Comp Physiol A 188:249–260Google Scholar
  140. Northcutt RG (1977) Elasmobranch central nervous system organization and its possible evolutionary significance. Am Zool 17:411–429Google Scholar
  141. Northcutt R (1978) Brain organization in the cartilaginous fishes. In: Hodgson ES, Mathewson RF (eds) Sensory biology of sharks, skates and rays. Office of Naval Research, Arlington, pp 117–193Google Scholar
  142. Northcutt RG (2011) Do teleost fish possess a homolog of mammalian isocortex? Brain Behav Evol 78:136–138PubMedGoogle Scholar
  143. O’Connell CP, Abel DC, Gruber SH et al (2011) Response of juvenile lemon sharks, Negaprion brevirostris, to a magnetic barrier simulating a beach net. Ocean Coast Manag 54:225–230Google Scholar
  144. O’Gower AK (1995) Speculations on a spatial memory for the Port Jackson shark (Heterodontus portusjacksoni) (Meyer) (Heterodontidae). Mar Freshw Res 46:861–871Google Scholar
  145. O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, OxfordGoogle Scholar
  146. Odling-Smee L, Braithwaite VA (2003a) The role of learning in fish orientation. Fish Fish 4:235–246Google Scholar
  147. Odling-Smee L, Braithwaite VA (2003b) The influence of habitat stability on landmark use during spatial learning in the three-spined stickleback. Anim Behav 65:701–707Google Scholar
  148. Odling-Smee LC, Simpson SD, Braithwaite VA (2006) The role of learning in fish orientation. In: Brown C, Laland K, Krause J (eds) Fish cognition and behaviour. Blackwell, Oxford, pp 166–185Google Scholar
  149. Odling-Smee LC, Bouhman JW, Braithwaite VA (2008) Sympatic species of threespine stickleback differ in their performance in a spatial learning task. Behav Ecol Sociobiol 62:1935–1945Google Scholar
  150. Papastamatiou YP, Cartamil DP, Lowe CG, Meyer CG, Wetherbee BM, Holland KN (2011) Scales of orientation, directed walks and movement path structure in sharks. J Anim Ecol 80:864–874PubMedGoogle Scholar
  151. Paśko K (2010) Tool-like behavior in the sixbar wrasse, Thalassoma hardwicke (Bennett, 1830). Zoo Biol 29:767–773PubMedGoogle Scholar
  152. Pike TT, Kendal JR, Rendell LE, Laland KN (2010) Learning by proportional observation in a species of fish. Behav Ecol 21:570–575Google Scholar
  153. Pollen AA, Dobberfuhl AP, Scarce J, Igulu MM, Renn SCP, Shumway CA, Hofmann HA (2007) Environmental complexity and social organization sculpt the brain in Lake Tangayikan cichlid fish. Brain Behav Evol 70:21–39PubMedGoogle Scholar
  154. Portavella M, Vargas JP (2005) Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur J Neurosci 21:2800–2806PubMedGoogle Scholar
  155. Portavella M, Vargas JP, Torres B, Salas C (2002) The effects of telencephalic pallial lesions on spatial, temporal and emotional learning in goldfish. Brain Res Bull 57:397–399PubMedGoogle Scholar
  156. Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JLR (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr 1. J Comp Neurol 424:409–438PubMedGoogle Scholar
  157. Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:570–578PubMedGoogle Scholar
  158. Rasmussen LEL, Schmidt MJ (1992) Are sharks chemically aware of crocodiles? In: Doty RL, Müller-Schwarze D (eds) Chemical signals in vertebrates IV. Plenum Press, New York, pp 335–342Google Scholar
  159. Reese ES (1989) Orientation behavior of butterflyfishes (family Chaetodontidae) on coral reefs: spatial learning of route specific landmarks and cognitive maps. Dev Environ Biol Fish 9:79–86Google Scholar
  160. Reiner A (2004) Avian brain nomenclature consortium. Revised nomenclature for avian telencephalon some related brainstem nuclei. J Comp Neurol 473:377–414PubMedCentralPubMedGoogle Scholar
  161. Rensch B (1957) Ästhetische Faktoren bei Farb- und Formbevorzugungen von Affen. Z Tierpsychol 14:71–99Google Scholar
  162. Rensch B (1958) Die Wirksamkeit ästhetischer Faktoren bei Wirbeltieren. Z Tierpsychol 15:447–461Google Scholar
  163. Rodriguez F, Duran E, Vargas JP, Torres B, Salas C (1994) Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes. Anim Learn Behav 22:409–420Google Scholar
  164. Rodriguez F, Broglio C, Durán E, Gómez Y, Salas C (2006) Neural mechanisms of learning in teleost fishes. In: Brown C, Laland K, Krause J (eds) Fish cognition and behaviour. Blackwell, Oxford, pp 243–277Google Scholar
  165. Rodríguez I, Gumbert A, de Ibarra NH, Kunze J, Giurfa M (2004) Symmetry is in the eye of the beeholder: innate preference for bilateral symmetry in flower-naïve bumblebees. Naturwiss 91:374–377PubMedGoogle Scholar
  166. Rodriguez-Moldes I (2009) A developmental approach to forebrain organization in elasmobranchs: new perspectives on the regionalization of the telecephalon. Brain Behav Evol 74:20–29PubMedGoogle Scholar
  167. Roitblatt HL, Tham W, Golub L (1982) Performance of Betta splendens in a radial arm maze. Anim Learn Behav 10:108–114Google Scholar
  168. Roth G, Grunwald S, Mühlenbrock-Lentner S (2004) Morphology and axonal projection pattern of neurons in the telencephalon of the fire-bellied toad Bombina orientalis. J Comp Neurol 478:35–61PubMedGoogle Scholar
  169. Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae anticipate periodic events. Phys Rev Lett 100:018101Google Scholar
  170. Salas C, Broglio C, Rodriguez F, Lopez JC, Portavella M, Torres B (1996a) Telencephalic ablation in goldfish impairs performance in a ‘spatial constancy’ problem but not in a cued one. Behav Brain Res 79:193–200PubMedGoogle Scholar
  171. Salas C, Rodriguez F, Vargas JP, Duran E, Torres B (1996b) Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures. Behav Neurosci 110:965–980PubMedGoogle Scholar
  172. Salwiczek LH, Pretot L, Demarta L, Proctor D, Essler J, Pinto AL, Wismer S, Stoinski T, Brosnan SF, Bshary R (2012) Adult cleaner wrasse outperform capuchin monkeys, chimpanzees and orang-utans in a complex foraging task derived from cleaner–clint reef fish cooperation. PLOS One 7:e49068PubMedCentralPubMedGoogle Scholar
  173. Sanders MJ, Wiltgen BJ, Fanselow MS (2003) The place of the hippocampus in fear conditioning. Eur J Pharmacol 463:217–223PubMedGoogle Scholar
  174. Schluessel V, Bleckmann H (2005) Spatial memory and orientation strategies in the elasmobranch Potamotrygon motoro. J Comp Physiol A 191:695–706Google Scholar
  175. Schluessel V, Bleckmann H (2012) Spatial learning and memory retention in the grey bamboo shark (Chiloscyllium griseum). Zoology 115:346–353PubMedGoogle Scholar
  176. Schluessel V, Fricke G, Bleckmann H (2012) Visual discrimination and object categorization in the cichlid Pseudotropheus sp. Anim Cogn 15:525–537PubMedGoogle Scholar
  177. Schluessel V, Kraniotakes H, Bleckmann H (2014a) Visual discrimination of rotated 3D objects in Malawi Cichlids (Pseudotropheus sp.): a first indication for form constancy in fishes. Anim Cogn 17:359–371PubMedGoogle Scholar
  178. Schluessel V, Beil O, Weber T, Bleckmann H (2014b) Symmetry perception in sharks (Chiloscyllium griseum) and cichlids (Pseudotropheus sp.). Anim Cogn. doi: 10.1007/s10071-014-0751-2 Google Scholar
  179. Schlupp D, Ryan MJ (1997) Male sailfin mollies (Poecilia latipinna) copy the mate choice of other males. Behav Ecol 8:104–107Google Scholar
  180. Schuster S, Rossel S, Schmidtmann A, Jäger I, Piralla J (2004) Archer fish learn to compensate for complex optical distortions to determine the absolute size of their aerial prey. Curr Biol 14:1565–1568PubMedGoogle Scholar
  181. Schuster S, Wöhl S, Griebsch M, Klostermeier I (2006) Animal cognition: how archer fish learn to down rapidly moving targets. Curr Biol 16:378–383PubMedGoogle Scholar
  182. Schwarze S, Bleckmann H, Schluessel V (2013) Avoidance conditioning in bamboo sharks (Chiloscyllium punctatum and C. griseum): behavioural and neuroanatomical aspects. J Comp Physiol A 199:843–856Google Scholar
  183. Segall MH, Campbell LT, Herskovits MJ (1966) The influence of culture on visual perception. Bobbs-Merrill, IndianapolisGoogle Scholar
  184. Sherry DF, Vaccarino AL, Buckenham K, Herz RS (1989) The hippocampal complex of food-storing birds. Brain Behav Evol 34:308–317PubMedGoogle Scholar
  185. Sherry DF, Jacobs LF, Gaulin SJC (1992) Spatial memory and adaptive specialisation of the hippocampus. Trends Neurosci 15:298–303PubMedGoogle Scholar
  186. Shettleworth SJ (2010) Clever animals and killjoy explanations in comparative psychology. Trends Cogn Sci 14:477–481PubMedGoogle Scholar
  187. Shumway CA (2008) Habitat complexity, brain, and behavior. Brain Behav Evol 72:123–134PubMedGoogle Scholar
  188. Siciliano AM, Kajiura SM, Long JH Jr, Porter ME (2013) Are you positive? Electric dipole polarity discrimination in the yellow stingray Urobatis jamaicensis. Biol Bull 225:85–91PubMedGoogle Scholar
  189. Siebeck UE, Litherland L, Wallis GM (2009) Shape learning and discrimination in reef fish. J Exp Biol 212:2113–2119PubMedGoogle Scholar
  190. Sims DW, Southall EJ, Richardson AJ, Reid PC, Metcalfe JD (2003) Seasonal movements and behaviour of basking sharks from archival tagging: no evidence of winter hibernation. Mar Ecol Prog Ser 248:187–196Google Scholar
  191. Smeets WJAJ, Nieuwenhuys R, Roberts BL (1983) The central nervous system of cartilaginous fishes. Structure and functional correlations. Springer, BerlinGoogle Scholar
  192. Sovrano VA, Bisazza A (2008) Recognition of partly occluded objects by fish. Cognition 11:161–166Google Scholar
  193. Sovrano VA, Bisazza A (2009) Perception of subjective contours in fish. Perception 38:479–490Google Scholar
  194. Sovrano VA, Bisazza A, Vallortigara G (2002) Modularity and spatial reorientation in a simple mind: encoding of geometric and nongeometric properties of a spatial environment by fish. Cognition 85:B51–B59PubMedGoogle Scholar
  195. Sovrano VA, Bisazza A, Vallortigara G (2007) How fish do geometry in large and in small spaces. Cognition 10:47–54Google Scholar
  196. Spaet JLY, Kessel ST, Gruber SH (2010) Learned hook avoidance of lemon sharks (Negaprion brevirostris) based on electroreception and shock treatment. Mar Biol Res 6:399–407Google Scholar
  197. Spinozzi G (1996) Categorization in monkeys and chimpanzees. Behav Brain Res 74:17–24PubMedGoogle Scholar
  198. Squire L (2004) Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82:171–177PubMedGoogle Scholar
  199. Srinivasan MV (2010) Honey bees as a model for vision, perception, and cognition. Annu Rev Entomol 55:267–284PubMedGoogle Scholar
  200. Striedter GF (1997) The telencephalon of tetrapods in evolution. Brain Behav Evol 49:179–213PubMedGoogle Scholar
  201. Suboski MD, Bain S, Carty AE, McQuoid LM, Seelen MI, Seifert M (1990) Alarm reaction in acquisition and social transmission of simulated-predator recognition by zebra danio fish (Brachydanio rerio). J Comp Psychol 104:101–112Google Scholar
  202. Sundström LF, Gruber SH, Clermont SM, Correia JPS, de Marignac JRC, Morrissey JF, Lowrance CR, Thomassen L, Oliveira MT (2001) Review of elasmobranch behavioral studies using ultrasonic telemetry with special reference to the lemon shark, Negaprion brevirostris, around Bimini Islands, Bahamas. Environ Biol Fish 60:225–250Google Scholar
  203. Tarrant RM (1964) Rate of extinction of a conditional response in juvenile sockeye salmon. Trans Am Fish Soc 93:399–401Google Scholar
  204. Tester A, Kato S (1966) Visual target discrimination in blacktip sharks (Carcharhinus melanopterus) and grey sharks (C. menisorrah). Pac Sci 20:461–471Google Scholar
  205. Teyke T (1989) Learning and remembering the environment in the blind cave fish Anoptichthys jordani. J Comp Physiol A 164:655–662Google Scholar
  206. Thonhauser KE, Gutnick T, Byrne RA, Kral K, Burghardt GM, Kuba M (2013) Social learning in cartilaginous fish (stingrays Potamotrygon falkneri). Anim Cogn 16:927–932PubMedGoogle Scholar
  207. Thornton A, Clayton NS, Grodzinski U (2012) Animal minds: from computation to evolution. Philos Trans R Soc Lond B Biol Sci 367:2670–2676PubMedCentralPubMedGoogle Scholar
  208. Thünken T, Waitschyk N, Bakker TCM, Kullmann H (2009) Olfactory self-recognition in a cichlid fish. Anim Cogn 12:717–724PubMedGoogle Scholar
  209. Tigges M (1962) Muster- und Farbbevorzugung bei Fischen. Z Tierpsychol 20:129–142Google Scholar
  210. Tricas TC, Sisneros JA (2004) Ecological functions and adaptations of the elasmobranch electrosense. In: von der Emde G, Mogdans J, Kapoor BG (eds) The senses of fish. Narosa Publishing house, pp 308–329Google Scholar
  211. Vargas JP, Lopez JC, Salas C, Thinus-Blanc C (2004) Encoding of geometric and featural spatial information by goldfish (Carassius auratus). J Comp Psychol 2:206–216Google Scholar
  212. Vargas JP, López JC, Portavella M (2009) What are the functions of fish brain pallium? Brain Res Bull 79:436–440PubMedGoogle Scholar
  213. Vargas JP, Quintero E, López JC (2011) Influence of distal and proximal cues in encoding geometric information. Anim Cogn 14:351–358PubMedGoogle Scholar
  214. von der Emde G (1999) Active electrolocation of objects in weakly electric fish. J Exp Biol 202:1205–1215PubMedGoogle Scholar
  215. von der Emde G, Behr K, Bouton B, Engelmann J, Fetz S, Folde C (2010) 3-Dimensional scene perception during active electrolocation in a weakly electric pulse fish. Front Behav Neurosci 4:26PubMedCentralPubMedGoogle Scholar
  216. Warburton K (1990) The use of local landmarks by foraging goldfish. Anim Behav 40:500–505Google Scholar
  217. Warburton K (2003) Learning of foraging skills by fish. Fish Fish 4:203–215Google Scholar
  218. Ward AJW, Axford S, Krause J (2003) Cross-species familiarity in shoaling fish. Proc R Soc Lond B 270:1157–1161Google Scholar
  219. Ware DM (1971) Predation by rainbow trout (Salmo gairdneri): the effect of experience. J Fish Res Board Can 28:1847–1852Google Scholar
  220. Webster MM, Laland KN (2011) Reproductive state affects reliance on public information in sticklebacks. Proc R Soc B Biol Sci 278:619–627Google Scholar
  221. White KG (2001) Forgetting functions. Anim Learn Behav 29:193–207Google Scholar
  222. Wilkens LA, Hofmann MH, Wojtenek W (2002) The electric sense of the paddlefish: a passive system for the detection and capture of zooplankton prey. J Physiol 96:363–377Google Scholar
  223. Wirtz P (1996) Werkzeuggebrauch bei Lippfischen. Aquarium Terrarium Z 1:4–5Google Scholar
  224. Wood LS, Desjardins JK, Fernald R (2011) Effects of stress and motivation on performing in a spatial task. Neurobiol Learn Mem 95:277–285PubMedCentralPubMedGoogle Scholar
  225. Wright T, Jackson R (1964) Instrumental conditioning of young sharks. Copeia 1964:409–412Google Scholar
  226. Wullimann MF (1997) The central nervous system. In: Evans DH (ed) Physiology of fishes. CRC Press, Boca Raton, pp 245–282Google Scholar
  227. Wullimann MF, Mueller T (2004) Teleostean and mammalian forebrains contrasted: evidence from genes to behavior. J Comp Neurol 475:143–162PubMedGoogle Scholar
  228. Wunder W (1934) Gattenwahlversuche bei Stichling und Bitterling. Dtsch Zool Ges 36:152–158Google Scholar
  229. Wyzisk K (2005) Experimente zur Formen- und Größenwahrnehmung beim Goldfisch (Carassius auratus) unter Verwendung von Scheinkonturen und Größentäuschungen. PhD Thesis, Johannes Gutenberg Universität MainzGoogle Scholar
  230. Wyzisk K, Neumeyer C (2007) Perception of illusory surfaces and contours in goldfish. Vis Neurosci 24:291–298PubMedGoogle Scholar
  231. Yopak KE (2012a) Neuroecology in cartilaginous fishes: the functional implications of brain scaling. J Fish Biol 80:1968–2023PubMedGoogle Scholar
  232. Yopak KE (2012b) The nervous system of cartilaginous fishes. Brain Behav Evol 80:77–79PubMedGoogle Scholar
  233. Yopak KE, Frank LR (2009) Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging. Brain Behav Evol 74:121–142PubMedGoogle Scholar
  234. Yopak KE, Lisney TJ, Collin SP, Montgomery JC (2007) Variation in brain organization and cerebellar foliation in chondrichthyans: sharks and holocephalans. Brain Behav Evol 69:280–300PubMedGoogle Scholar
  235. Yue S, Moccia RD, Duncan IJH (2004) Investigating fear in domestic rainbow trout, (Oncorhynchus mykiss), using an avoidance learning task. Appl Anim Behav Sci 87:343–354Google Scholar
  236. Zerbolio DJ, Royalty JL (1983) Matching and oddity conditional discrimination in the goldfish as avoidance responses: evidence for conceptual avoidance learning. Anim Learn Behav 11:341–348Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of ZoologyRheinische-Friedrich-Wilhelm Universität BonnBonnGermany

Personalised recommendations