Animal Cognition

, Volume 17, Issue 3, pp 821–825 | Cite as

Dogs’ use of the solidity principle: revisited

  • Corsin A. MüllerEmail author
  • Stefanie Riemer
  • Friederike Range
  • Ludwig Huber
Short Communication


A wealth of comparative data has been accumulated over the past decades on how animals acquire and use information about the physical world. Domestic dogs have typically performed comparably poorly in physical cognition tasks, though in a recent study Kundey et al. (Anim Cogn 13:497–505, 2010) challenged this view and concluded that dogs understand that objects cannot pass through solid barriers. However, the eight subjects in the study of Kundey et al. may have solved the task with the help of perceptual cues, which had not been controlled for. Here, we tested dogs with a similar task that excluded these cues. In addition, unlike the set-up of Kundey et al., our set-up allowed the subjects to observe the effect of the solid barrier. Nevertheless, all 28 subjects failed to solve this task spontaneously and showed no evidence of learning across 50 trials. Our results therefore call into question the earlier suggestion that dogs have, or can acquire, an understanding of the solidity principle.


Physical knowledge Object knowledge Perceptual cues Canis familiaris 



We thank Alina Gaugg, Amelie Göschl, Elisabeth Pikhart, Magdalena Weiler and Elena Zanchi for help with the experiments; the dog owners for participation and the reviewers for constructive comments. This work was funded by the Austrian Science Fund (FWF Grant P21418 to L.H. and F.R.). S.R. was also supported by the DK CogCom Programme (FWF Doctoral Programs W1234), and the Clever Dog Lab received financial support from Royal Canin and a private sponsor.

Supplementary material

10071_2013_709_MOESM1_ESM.pdf (18 kb)
Supplementary material 1 (PDF 18 kb)

Supplementary material 2 (MPG 2172 kb)

Supplementary material 3 (MPG 1622 kb)


  1. ASAB (2006) Guidelines for the treatment of animals in behavioural research and teaching. Anim Behav 71:245–253. doi: 10.1016/j.anbehav.2005.10.001 CrossRefGoogle Scholar
  2. Bates D, Maechler M, Bolker B (2012) lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0.
  3. Berthier NE, DeBlois S, Poirier CR et al (2000) Where’s the ball? Two- and three-year-olds reason about unseen events. Dev Psychol 36:394–401. doi: 10.1037//0012-1649.36.3.394 PubMedCrossRefGoogle Scholar
  4. Bräuer J, Kaminski J, Riedel J et al (2006) Making inferences about the location of hidden food: social dog, causal ape. J Comp Psychol 120:38–47. doi: 10.1037/0735-7036.120.1.38 PubMedCrossRefGoogle Scholar
  5. Butler SC, Berthier NE, Clifton RK (2002) Two-year-olds’ search strategies and visual tracking in a hidden displacement task. Dev Psychol 38:581–590. doi: 10.1037//0012-1649.38.4.581 PubMedCrossRefGoogle Scholar
  6. Cacchione T, Call J, Zingg R (2009) Gravity and solidity in four great ape species (Gorilla gorilla, Pongo pygmaeus, Pan troglodytes, Pan paniscus): vertical and horizontal variations of the table task. J Comp Psychol 123:168–180. doi: 10.1037/a0013580 PubMedCrossRefGoogle Scholar
  7. Collier-Baker E, Davis JM, Suddendorf T (2004) Do dogs (Canis familiaris) understand invisible displacement? J Comp Psychol 118:421–433. doi: 10.1037/0735-7036.118.4.421 PubMedCrossRefGoogle Scholar
  8. Fiset S, Leblanc V (2007) Invisible displacement understanding in domestic dogs (Canis familiaris): the role of visual cues in search behavior. Anim Cogn 10:211–224. doi: 10.1007/s10071-006-0060-5 PubMedCrossRefGoogle Scholar
  9. Gallistel CR (2009) The importance of proving the null. Psychol Rev 116:439–453. doi: 10.1037/a0015251 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Hanus D, Call J (2011) Chimpanzee problem-solving: contrasting the use of causal and arbitrary cues. Anim Cogn 14:871–878. doi: 10.1007/s10071-011-0421-6 PubMedCrossRefGoogle Scholar
  11. Heffner R, Heffner H (1992) Hearing in large mammals: sound-localization acuity in cattle (Bos taurus) and goats (Capra hircus). J Comp Psychol 106:107–113. doi: 10.1037//0735-7036.106.2.107 PubMedCrossRefGoogle Scholar
  12. Kundey SMA, De Los Reyes A, Taglang C et al (2010) Domesticated dogs’ (Canis familiaris) use of the solidity principle. Anim Cogn 13:497–505. doi: 10.1007/s10071-009-0300-6 PubMedCrossRefGoogle Scholar
  13. Osthaus B, Lea SEG, Slater AM (2005) Dogs (Canis lupus familiaris) fail to show understanding of means-end connections in a string-pulling task. Anim Cogn 8:37–47. doi: 10.1007/s10071-004-0230-2 PubMedCrossRefGoogle Scholar
  14. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
  15. Rooijakkers EF, Kaminski J, Call J (2009) Comparing dogs and great apes in their ability to visually track object transpositions. Anim Cogn 12:789–796. doi: 10.1007/s10071-009-0238-8 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Santos LR (2004) “Core knowledges”: a dissociation between spatiotemporal knowledge and contact-mechanics in a non-human primate? Dev Sci 7:167–174. doi: 10.1111/j.1467-7687.2004.00335.x PubMedCrossRefGoogle Scholar
  17. Santos LR, Seelig D, Hauser MD (2006) Cotton-top tamarins’ (Saguinus oedipus) expectations about occluded objects: a dissociation between looking and reaching tasks. Infancy 9:147–171. doi: 10.1207/s15327078in0902_4 CrossRefGoogle Scholar
  18. Shettleworth SJ (2010) Cognition, evolution and behavior, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  19. Taylor AH, Medina FS, Holzhaider JC et al (2010) An investigation into the cognition behind spontaneous string pulling in New Caledonian crows. PLoS ONE 5:e9345. doi: 10.1371/journal.pone.0009345 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Taylor AH, Knaebe B, Gray RD (2012) An end to insight? New Caledonian crows can spontaneously solve problems without planning their actions. Proc R Soc B 279:4977–4981. doi: 10.1098/rspb 2012.1998PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Corsin A. Müller
    • 1
    • 2
    Email author
  • Stefanie Riemer
    • 1
    • 2
  • Friederike Range
    • 1
  • Ludwig Huber
    • 1
  1. 1.Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of ViennaUniversity of ViennaViennaAustria
  2. 2.Department of Cognitive BiologyUniversity of ViennaViennaAustria

Personalised recommendations