Advertisement

Animal Cognition

, Volume 17, Issue 2, pp 483–494 | Cite as

Male vocal competition is dynamic and strongly affected by social contexts in music frogs

  • Guangzhan Fang
  • Fan Jiang
  • Ping Yang
  • Jianguo Cui
  • Steven E. Brauth
  • Yezhong Tang
Original Paper

Abstract

Male–male vocal competition in anuran species is critical for mating success; however, it is also highly time-consuming, energetically demanding and likely to increase predation risks. Thus, we hypothesized that changes in the social context would cause male vocal competition to change in real time in order to minimize the costs and maximize the benefits of competition. To test this hypothesis, we assessed the effect of repeating playbacks of either white noise (WN) or male advertisement calls on male call production in the Emei music frog (Babina daunchina), a species in which males build mud-retuse burrows and call from within these nests. Previous studies have shown that calls produced from inside burrows are highly sexually attractive (HSA) to females while those produced outside nests are of low sexual attractiveness (LSA). Results showed that most subjects called responsively after the end of WN playbacks but before the onset of conspecific call stimuli although call numbers were similar, indicating that while males adjusted competitive patterns according to the biological significance of signals, their competitive motivation did not change. Furthermore, these data indicate that the frogs had evolved the ability of interval timing. Moreover, when the inter-stimulus interval (ISI) between playbacks was varied, the subjects preferentially competed with HSA calls when the ISI was short (<4 s) but responded equally to HSA and LSA calls if the ISI was long (≥4 s), suggesting that males allocate competitive efforts depending on both the perceived sexual attractiveness of rivals and the time available for calling. Notably, approximately two-thirds of male calls occurred in response to HSA calls, a preference rate comparable to that previously found for females in phonotaxis experiments and consistent with the idea that the mechanisms underlying both the male’s competitive responses to rivals and the female’s preferences toward potential mates coevolved under the same selective pressure.

Keywords

Male–male competition Advertisement call Competitive strategy Sexual attractiveness Interval timing Frog 

Notes

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (No. 31372217 to Guangzhan Fang and No. 31270042 to Jianguo Cui), from the “Hundred Talents Program” of Chinese Academy of Sciences (KSCX2-YW-R-077) to Yezhong Tang and from the Youth Professor Project of Chengdu Institute of Biology (Y3B3011) and Youth Innovation Promotion Association of Chinese Academy of Sciences (Y2C3011, KSCX2-EW-J-22) to Jianguo Cui.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Animal procedures were approved by the Animal Care and Use Committee of the Chengdu Institute of Biology.

Supplementary material

10071_2013_680_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1246 kb)

References

  1. Akre KL, Ryan MJ (2010) Complexity increases working memory for mating signals. Curr Biol 20(6):502–505. doi: 10.1016/j.cub.2010.01.021 PubMedCrossRefGoogle Scholar
  2. Amy M, Monbureau M, Durand C, Gomez D, Théry M, Leboucher G (2008) Female canary mate preferences: differential use of information from two types of male–male interaction. Anim Behav 76(3):971–982. doi: 10.1016/j.anbehav.2008.03.023 CrossRefGoogle Scholar
  3. Arak A (1983) Sexual selection by male–male competition in natterjack toad choruses. Nature 306(5940):261–262. doi: 10.1038/306261a0 CrossRefGoogle Scholar
  4. Baddeley A (2010) Working memory. Curr Biol 20(4):R136–R140. doi: 10.1016/j.cub.2009.12.014 PubMedCrossRefGoogle Scholar
  5. Baddeley A, Hitch G (1974) Working memory. In: GA B (ed) Recent advances in learning and motivation, vol 8. Academic Press, New York, pp 47–89Google Scholar
  6. Bergmüller R, Taborsky M (2010) Animal personality due to social niche specialisation. Trends Ecol Evol 25(9):504–511. doi: 10.1016/j.tree.2010.06.012 PubMedCrossRefGoogle Scholar
  7. Brockmann HJ (2001) The evolution of alternative strategies and tactics. Adv Study Behav 30:1–51. doi: 10.1016/S0065-3454(01)80004-8 CrossRefGoogle Scholar
  8. Byrne PG (2008) Strategic male calling behavior in an Australian terrestrial toadlet (Pseudophryne bibronii). Copeia 2008(1):57–63. doi: 10.1643/CE-05-294 CrossRefGoogle Scholar
  9. Cheng K, Crystal J (2008) Learning to time intervals. In: Menzel R (ed) Learning theory and behavior: a comprehensive reference, vol 1. Academic Press, Oxford, pp 341–364CrossRefGoogle Scholar
  10. Cohen J (1992) A power primer. Psychol Bull 112(1):155–159. doi: 10.1037//0033-2909.112.1.155 PubMedCrossRefGoogle Scholar
  11. Contreras-Garduño J, Osorno JL, Córdoba-Aguilar A (2007) Male-male competition and female behavior as determinants of male mating success in the semi-terrestrial hermit crab Coenobita compressus (H. Milne Edwards). J Crust Biol 27(3):411–416. doi: 10.1651/S-2684.1 CrossRefGoogle Scholar
  12. Cotton S, Small J, Pomiankowski A (2006) Sexual selection and condition-dependent mate preferences. Curr Biol 16(17):R755–R765. doi: 10.1016/j.cub.2006.08.022 PubMedCrossRefGoogle Scholar
  13. Cox CR, Le Boeuf BJ (1977) Female incitation of male competition: a mechanism in sexual selection. Am Nat 111(978):317–335 Google Scholar
  14. Crystal JD (2006) Animal behavior: timing in the wild. Curr Biol 16(7):R252–R253. doi: 10.1016/j.cub.2006.03.001 PubMedCrossRefGoogle Scholar
  15. Crystal JD, Baramidze GT (2007) Endogenous oscillations in short-interval timing. Behav Processes 74(2):152–158. doi: 10.1016/j.beproc.2006.10.008 PubMedCrossRefGoogle Scholar
  16. Cui JG, Wang YS, Brauth SE, Tang YZ (2010) A novel female call incites male-female interaction and male–male competition in the Emei music frog, Babina daunchina. Anim Behav 80:181–187. doi: 10.1016/j.anbehav.2010.05.012 CrossRefGoogle Scholar
  17. Cui JG, Song XY, Fang GZ, Xu F, Brauth SE, Tang YZ (2011) Circadian rhythm of calling behavior in the Emei music frog (Babina daunchina) is associated with habitat temperature and relative humidity. Asian Herpetol Res 2(3):149–154. doi: 10.3724/SP.J.1245.2011.00149 CrossRefGoogle Scholar
  18. Cui JG, Tang YZ, Narins PM (2012) Real estate ads in Emei music frog vocalizations: female preference for calls emanating from burrows. Biol Lett 8(3):337–340. doi: 10.1098/rsbl.2011.1091 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Dyson ML, Passmore NI (1988) The combined effect of intensity and the temporal relationship of stimuli on phonotaxis in female painted reed frogs Hyperolius marmoratus. Anim Behav 36(5):1555–1556. doi: 10.1016/S0003-3472(88)80232-X CrossRefGoogle Scholar
  20. Fang GZ, Yang P, Cui JG, Yao DZ, Brauth SE, Tang YZ (2012) Mating signals indicating sexual receptiveness induce unique spatio-temporal EEG theta patterns in an anuran species. PLoS ONE 7(12):e52364. doi: 10.1371/journal.pone.0052364 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Freeberg TM, Lucas JR (2009) Pseudoreplication is (still) a problem. J Comp Psychol 123(4):450–451. doi: 10.1037/a0017031 PubMedCrossRefGoogle Scholar
  22. Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, ChicagoGoogle Scholar
  23. Grafe TU (1997) Costs and benefits of mate choice in the lek-breeding reed frog Hyperolius marmoratus. Anim Behav 53(5):1103–1117. doi: 10.1006/anbe.1996.0427 CrossRefGoogle Scholar
  24. Grafe TU (1999) A function of synchronous chorusing and a novel female preference shift in an anuran. Proc R Soc Lond B Biol Sci 266(1435):2331–2336. doi: 10.1098/rspb.1999.0927 CrossRefGoogle Scholar
  25. Grafe TU (2005) Anuran choruses as communication networks. In: McGregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 277–299CrossRefGoogle Scholar
  26. Greenfield MD (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, OxfordGoogle Scholar
  27. Greenfield MD (2005) Mechanisms and evolution of communal sexual displays in arthropods and anurans. Adv Study Behav 35:1–62. doi: 10.1016/S0065-3454(05)35001-7 CrossRefGoogle Scholar
  28. Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11(2):92–98. doi: 10.1016/0169-5347(96)81050-0 PubMedCrossRefGoogle Scholar
  29. Howard RD, Palmer JG (1995) Female choice in Bufo americanus: effects of dominant frequency and call order. Copeia 1:212–217CrossRefGoogle Scholar
  30. Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54(2):187–211. doi: 10.2307/1942661 CrossRefGoogle Scholar
  31. Hurlbert SH (2004) On misinterpretations of pseudoreplication and related matters: a reply to Oksanen. Oikos 104(3):591–597. doi: 10.1111/j.0030-1299.2004.12752.x CrossRefGoogle Scholar
  32. Klump GM, Gerhardt HC (1992) Mechanisms and function of call-timing in male–male interactions in frogs. In: McGregor P (ed) Playback and studies of animal communication. Plenum, New York, pp 153–174CrossRefGoogle Scholar
  33. Kroodsma DE, Byers BE, Goodale E, Johnson S, Liu W-C (2001) Pseudoreplication in playback experiments, revisited a decade later. Anim Behav 61(5):1029–1033. doi: 10.1006/anbe.2000.1676 CrossRefGoogle Scholar
  34. Lee DK, Itti L, Koch C, Braun J (1999) Attention activates winner-take-all competition among visual filters. Nat Neurosci 2:375–381. doi: 10.1038/7286 PubMedCrossRefGoogle Scholar
  35. Leonard AS, Hedrick AV (2009) Male and female crickets use different decision rules in response to mating signals. Behav Ecol 20(6):1175–1184. doi: 10.1093/beheco/arp115 CrossRefGoogle Scholar
  36. Litovsky RY, Colburn HS, Yost WA, Guzman SJ (1999) The precedence effect. J Acoust Soc Am 106:1633–1654. doi: 10.1121/1.427914 PubMedCrossRefGoogle Scholar
  37. Loftus-Hills JJ (1973) Neural mechanisms underlying acoustic behaviour of the frog, Pseudophryne semimarmorata (Anura: Leptodactylidae). Anim Behav 21(4):781–787. doi: 10.1016/S0003-3472(73)80104-6 PubMedCrossRefGoogle Scholar
  38. Loftus-Hills JJ (1974) Analysis of an acoustic pacemaker in Strecker’s chorus frog, Pseudacris streckeri (Anura: Hylidae). J Comp Physiol 90(1):75–87. doi: 10.1007/BF00698369 CrossRefGoogle Scholar
  39. Martínez-Rivera CC, Gerhardt HC (2008) Advertisement-call modification, male competition, and female preference in the bird-voiced treefrog Hyla avivoca. Behav Ecol Sociobiol 63(2):195–208. doi: 10.1007/s00265-008-0650-0 PubMedCentralPubMedCrossRefGoogle Scholar
  40. McGregor PK (2000) Playback experiments: design and analysis. Acta ethologica 3(1):3–8. doi: 10.1007/s102110000023 CrossRefGoogle Scholar
  41. McGregor P, Catchpole C, Dabelsteen T, Falls J, Fusani L, Gerhardt H, Gilbert F, Horn A, Klump G, Kroodsma D (1992) Design of playback experiments: the Thornbridge Hall NATO ARW consensus. Playback and studies of animal communication. Plenum Press, New YorkGoogle Scholar
  42. Munro BH (2005) Statistical methods for health care research, vol 1. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  43. Naguib M (1999) Effects of song overlapping and alternating on nocturnally singing nightingales. Anim Behav 58(5):1061–1067. doi: 10.1006/anbe.1999.1223 PubMedCrossRefGoogle Scholar
  44. Naguib M (2005) Singing interactions in songbirds: implications for social relations and territorial settlement. In: McGregor PK (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 300–319CrossRefGoogle Scholar
  45. Oksanen L (2001) Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94(1):27–38. doi: 10.1034/j.1600-0706.2001.11311.x CrossRefGoogle Scholar
  46. Oksanen L (2004) The devil lies in details: reply to Stuart Hurlbert. Oikos 104(3):598–605. doi: 10.1111/j.0030-1299.2004.13266.x CrossRefGoogle Scholar
  47. Patricelli GL, Uy JAC, Walsh G, Borgia G (2002) Sexual selection: male displays adjusted to female’s response. Nature 415(6869):279–280. doi: 10.1038/415279a PubMedCrossRefGoogle Scholar
  48. Price AC, Helen Rodd F (2006) The effect of social environment on male–male competition in guppies (Poecilia reticulata). Ethology 112(1):22–32. doi: 10.1111/j.1439-0310.2006.01142.x CrossRefGoogle Scholar
  49. Rémy A, Grégoire A, Perret P, Doutrelant C (2010) Mediating male–male interactions: the role of the UV blue crest coloration in blue tits. Behav Ecol Sociobiol 64(11):1839–1847. doi: 10.1007/s00265-010-0995-z CrossRefGoogle Scholar
  50. Sauseng P, Klimesch W, Gruber WR, Birbaumer N (2008) Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. Neuroimage 40(1):308–317. doi: 10.1016/j.neuroimage.2007.11.032 PubMedCrossRefGoogle Scholar
  51. Sauseng P, Griesmayr B, Freunberger R, Klimesch W (2010) Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34(7):1015–1022. doi: 10.1016/j.neubiorev.2009.12.006 PubMedCrossRefGoogle Scholar
  52. Schank JC, Koehnle TJ (2009) Pseudoreplication is a pseudoproblem. J Comp Psychol 123(4):421–433. doi: 10.1037/a0013579 PubMedCrossRefGoogle Scholar
  53. Schwartz JJ (1987) The function of call alternation in anuran amphibians: a test of three hypotheses. Evolution 41:461–471. doi: 10.2307/2409249 CrossRefGoogle Scholar
  54. Schwartz JJ, Buchanan BW, Gerhardt HC (2001) Female mate choice in the gray treefrog (Hyla versicolor) in three experimental environments. Behav Ecol Sociobiol 49(6):443–455. doi: 10.1007/s002650100317 CrossRefGoogle Scholar
  55. Searcy WA, Nowicki S, Hughes M (1997) The response of male and female song sparrows to geographic variation in song. Condor: 651–657. doi: 10.2307/1370477
  56. Shen JX, Feng AS, Xu ZM, Yu ZL, Arch VS, Yu XJ, Narins PM (2008) Ultrasonic frogs show hyperacute phonotaxis to female courtship calls. Nature 453(7197):914–916. doi: 10.1038/nature06719 PubMedCrossRefGoogle Scholar
  57. Trivers R (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man. Aldine Press, Chicago, pp 136–179Google Scholar
  58. Wang XJ (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36(5):955–968. doi: 10.1016/S0896-6273(02)01092-9 PubMedCrossRefGoogle Scholar
  59. Wang XJ (2008) Decision making in recurrent neuronal circuits. Neuron 60(2):215–234. doi: 10.1016/j.neuron.2008.09.034 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Wells KD (2007) The ecology and behavior of amphibians. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  61. Wells K, Schwartz J (2006) The behavioral ecology of anuran communication. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer Verlag, New York, pp 44–86CrossRefGoogle Scholar
  62. Wiley RH, Poston J (1996) Perspective: indirect mate choice, competition for mates, and coevolution of the sexes. Evolution: 1371–1381. doi: 10.2307/2410875
  63. Williams GC (1996) Adaptation and natural selection: a critique of some current evolutionary thought. Princeton University Press, PrincetonGoogle Scholar
  64. Wong KF, Huk AC, Shadlen MN, Wang XJ (2007) Neural circuit dynamics underlying accumulation of time-varying evidence during perceptual decision making. Front comput neurosci 1:1–11. doi: 10.3389/neuro.10.006.2007 CrossRefGoogle Scholar
  65. Xu F, Cui JG, Song J, Brauth SE, Tang YZ (2012) Male competition strategies change when information concerning female receptivity is available. Behav Ecol 23(2):307–312. doi: 10.1093/beheco/arr187 CrossRefGoogle Scholar
  66. Zelick RD, Narins PM (1982) Analysis of acoustically evoked call suppression behaviour in a neotropical treefrog. Anim Behav 30(3):728–733. doi: 10.1016/S0003-3472(82)80144-9 CrossRefGoogle Scholar
  67. Zurek PM (1987) The precedence effect. In: Yost WA, Gourevitch G (eds) Directional hearing. Springer-Verlag, New York, pp 85–105 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guangzhan Fang
    • 1
  • Fan Jiang
    • 1
  • Ping Yang
    • 1
  • Jianguo Cui
    • 1
  • Steven E. Brauth
    • 2
  • Yezhong Tang
    • 1
  1. 1.Chengdu Institute of BiologyChinese Academy of SciencesChengduPeople’s Republic of China
  2. 2.Department of PsychologyUniversity of MarylandCollege ParkUSA

Personalised recommendations