Animal Cognition

, Volume 15, Issue 5, pp 999–1006 | Cite as

Perception of size-related formant information in male koalas (Phascolarctos cinereus)

  • Benjamin D. Charlton
  • William A. H. Ellis
  • Rebecca Larkin
  • W. Tecumseh Fitch
Original Paper


Advances in bioacoustics allow us to study the perceptual and functional relevance of individual acoustic parameters. Here, we use re-synthesised male koala bellows and a habituation–dishabituation paradigm to test the hypothesis that male koalas are sensitive to shifts in formant frequencies corresponding to the natural variation in body size between a large and small adult male. We found that males habituated to bellows, in which the formants had been shifted to simulate a large or small male displayed a significant increase in behavioural response (dishabituation) when they were presented with bellows simulating the alternate size variant. The rehabituation control, in which the behavioural response levels returned to that of the last playbacks of the habituation phase, indicates that this was not a chance increase in response levels. Our results provide clear evidence that male koalas perceive and attend to size-related formant information in their own species-specific vocalisations and suggest that formant perception is a widespread ability shared by marsupials and placental mammals, and perhaps by vertebrates more widely.


Koalas Vocal communication Formant frequencies Habituation–dishabituation Playback experiments 


  1. Baru AV (1975) Discrimination of synthesized vowels [a] and [i] with varying parameters (fundamental frequency, intensity, duration and number of formants) in dog. In: Fant G, Tatham MAA (eds) Auditory analysis and perception of speech. Academic, New York, pp 91–101Google Scholar
  2. Burdick CK, Miller JD (1975) Speech perception by the chinchilla: discrimination of sustained/a/and/i/. J Acoust Soc Am 58(2):415–427PubMedCrossRefGoogle Scholar
  3. Charlton BD, Reby D, McComb K (2007a) Female perception of size-related formants in red deer, Cervus elaphus. Anim Behav 74:707–714CrossRefGoogle Scholar
  4. Charlton BD, Reby D, McComb K (2007b) Female red deer prefer the roars of larger males. Biol Lett 3:382–385PubMedCrossRefGoogle Scholar
  5. Charlton BD, McComb K, Reby D (2008a) Free-ranging red deer hinds show greater attentiveness to roars with formant frequencies typical of young males. Ethology 114:1023–1031CrossRefGoogle Scholar
  6. Charlton BD, Reby D, McComb K (2008b) Effect of combined source (F0) and filter (formant) variation on red deer hind responses to male roars. J Acoust Soc Am 123(5):2936–2943PubMedCrossRefGoogle Scholar
  7. Charlton BD, Huang Y, Swaisgood RR (2009a) Vocal discrimination of potential mates by female giant pandas (Ailuropoda melanoleuca). Biol Lett 5:597–599PubMedCrossRefGoogle Scholar
  8. Charlton BD, Zhihe Z, Snyder RJ (2009b) The information content of giant panda, Ailuropoda melanoleuca, bleats: acoustic cues to sex, age and size. Anim Behav 78:893–898CrossRefGoogle Scholar
  9. Charlton BD, Zhihe Z, Snyder R (2010) Giant pandas perceive and attend to formant frequency variation in male bleats. Anim Behav 79(6):1221–1227CrossRefGoogle Scholar
  10. Charlton BD, Ellis WAH, McKinnon AJ, Brumm J, Nilsson K, Fitch WT (2011a) Perception of male caller identity in koalas (Phascolarctos cinereus): acoustic analysis and playback experiments. PLoS One 6:e20329PubMedCrossRefGoogle Scholar
  11. Charlton BD, Ellis WAH, McKinnon AJ, Cowin GJ, Brumm J, Nilsson K, Fitch WT (2011b) Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: honesty in an exaggerated trait. J Exp Biol 214:3414–3422PubMedCrossRefGoogle Scholar
  12. Davies NB, Halliday T (1978) Deep croaks and fighting assessment in toads (Bufo bufo). Nature 274:683–685CrossRefGoogle Scholar
  13. Dooling RJ, Brown SD (1990) Speech-perception by budgerigars (Melopsittacus-Undulatus)—spoken vowels. Percept Psychophys 47(6):568–574PubMedCrossRefGoogle Scholar
  14. Eimas PD, Siqueland ER, Jusczyk P, Vigorito J (1971) Speech perception in infants. Science 171(3968):303–306PubMedCrossRefGoogle Scholar
  15. Ellis WAH, Bercovitch FB (2011) Body size and sexual selection in the koala. Behav Ecol Sociobiol 65(6):1229–1235CrossRefGoogle Scholar
  16. Ellis WAH, Bercovitch FB, FitzGibbon S, Roe P, Wimmer J, Melzer A, Wilson R (2011) Koala bellows and their association with the spatial dynamics of free-ranging koalas. Behav Ecol 22(2):372–377CrossRefGoogle Scholar
  17. Fant G (1960) Acoustic theory of speech production. Mouton, The HagueGoogle Scholar
  18. Fitch WT (1997) Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. J Acoust Soc Am 102(2):1213–1222PubMedCrossRefGoogle Scholar
  19. Fitch WT (2010) The evolution of language. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Fitch WT, Fritz JB (2006) Rhesus macaques spontaneously perceive formants in conspecific vocalisations. J Acoust Soc Am 120(4):2132–2141PubMedCrossRefGoogle Scholar
  21. Fitch WT, Kelley JP (2000) Perception of vocal tract resonances by whooping cranes Grus americana. Ethology 106(6):559–574CrossRefGoogle Scholar
  22. Ghazanfar A, Turesson H, Maier J, Vandinther R, Patterson RD, Logothetis N (2007) Vocal-tract resonances as indexical cues in rhesus monkeys. Curr Biol 17(5):425–430PubMedCrossRefGoogle Scholar
  23. Hardouin LA, Reby D, Bavoux C, Burneleau G, Bretagnolle V (2007) Communication of male quality in owl hoots. Am Nat 169(4):552–562PubMedCrossRefGoogle Scholar
  24. Harris TR, Fitch WT, Goldstein LM, Fashing PJ (2006) Black and white colobus monkey (Colobus guereza) roars as a source of both honest and exaggerated information about body mass. Ethology 112(9):911–920CrossRefGoogle Scholar
  25. Hienz RD, Brady JV (1988) The acquisition of vowel discriminations by nonhuman primates. J Acoust Soc Am 84(1):186–194PubMedCrossRefGoogle Scholar
  26. Hienz RD, Sachs MB, Sinnott JM (1981) Discrimination of steady-state vowels by blackbirds and pigeons. J Acoust Soc Am 70(3):699–706CrossRefGoogle Scholar
  27. Hienz RD, Aleszczyk CM, May BJ (1996) Vowel discrimination in cats: thresholds for the detection of second formant changes in the vowel. J Acoust Soc Am 100(2):1052–1058PubMedCrossRefGoogle Scholar
  28. Hienz RD, Jones AM, Weerts EM (2004) The discrimination of baboon grunt calls and human vowel sounds by baboons. J Acoust Soc Am 116(3):1692–1697PubMedCrossRefGoogle Scholar
  29. Kimmel HD (1957) Three criteria for the use of one-tailed tests. Psychol Bull 54(4):351–353PubMedCrossRefGoogle Scholar
  30. Kroodsma DE, Byers BE, Goodale E, Johnson S, Liu WC (2001) Pseudoreplication in playback experiments, revisited a decade later. Anim Behav 61:1029–1033CrossRefGoogle Scholar
  31. Lieberman P, Blumstein SE (1988) Speech physiology, speech perception, and acoustic phonetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Mitchell P (1990) Social behaviour and communication of koalas. In: Lee AK, Handasyde KA, Sanson GD (eds) Biology of the koala. Surrey Beatty, Chipping Norton, pp 151–170Google Scholar
  33. Moulines E, Charpentier F (1990) Pitch synchronous waveform processing techniques for text-to-speech synthesis using diphones. Speech Commun 9:453–467CrossRefGoogle Scholar
  34. Owings DH, Morton ES (1998) Animal vocal communication: a new approach. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  35. Reby D, McComb K (2003) Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags. Anim Behav 65:519–530CrossRefGoogle Scholar
  36. Reby D, Hewison M, Izquierdo M, Pepin D (2001) Red deer (Cervus elaphus) hinds discriminate between the roars of their current harem-holder stag and those of neighbouring stags. Ethology 107(10):951–959CrossRefGoogle Scholar
  37. Reby D, McComb K, Cargnelutti B, Darwin C, Fitch WT, Clutton-Brock TH (2005) Red deer stags use formants as assessment cues during intrasexual agonistic interactions. Proc R Soc Lond Ser B Biol Sci 272:941–947CrossRefGoogle Scholar
  38. Rendall D, Rodman PS, Emond RE (1996) Vocal recognition of individuals and kin in free-ranging rhesus monkeys. Anim Behav 51:1007–1015CrossRefGoogle Scholar
  39. Riede T, Fitch WT (1999) Vocal tract length and acoustics of vocalization in the domestic dog (Canis familiaris). J Exp Biol 202(20):2859–2867PubMedGoogle Scholar
  40. Ruxton GD, Neuhauser M (2010) When should we use one-tailed hypothesis testing? Methods Ecol Evol 1(2):114–117CrossRefGoogle Scholar
  41. Sanvito S, Galimberti F, Miller EH (2007) Vocal signalling in male southern elephant seals is honest but imprecise. Anim Behav 73:287–299CrossRefGoogle Scholar
  42. Schouten JF (1940) The perception of pitch. Philips Tech Rev 5:286–294Google Scholar
  43. Sinnott JM (1989) Detection and discrimination of synthetic English vowels by Old World monkeys (Cercopithecus, Macaca) and humans. J Acoust Soc Am 86(2):557–565PubMedCrossRefGoogle Scholar
  44. Sinnott JM, Kreiter NA (1991) Differential sensitivity to vowel continua in Old-World Monkeys (Macaca) and humans. J Acoust Soc Am 89(5):2421–2429PubMedCrossRefGoogle Scholar
  45. Sinnott JM, Mosteller KW (2001) A comparative assessment of speech sound discrimination in the Mongolian gerbil. J Acoust Soc Am 110(4):1729–1732PubMedCrossRefGoogle Scholar
  46. Sinnott JM, Street SL, Mosteller KW, Williamson TL (1997) Behavioral measures of vowel sensitivity in Mongolian gerbils (Meriones unguiculatus): effects of age and genetic origin. Hear Res 112(1–2):235–246PubMedCrossRefGoogle Scholar
  47. Smith M (1980) Behaviour of the koala, Phascolarctos cinereus (Goldfuss), in captivity. III. Vocalizations. Aust Wildl Res 7:13–34CrossRefGoogle Scholar
  48. Sommers MS, Moody DB, Prosen CA, Stebbins WC (1992) Formant frequency discrimination by Japanese Macaques (Macaca fuscata). J Acoust Soc Am 91(6):3499–3510PubMedCrossRefGoogle Scholar
  49. Swartz KB (1983) Species discrimination in infant pigtail macques with pictorial stimuli. Dev Psychobiol 16(3):219–231PubMedCrossRefGoogle Scholar
  50. Taylor A, Reby D (2010) The contribution of source-filter theory to mammal vocal communication research. J Zool 280(3):221–236CrossRefGoogle Scholar
  51. Taylor AM, Reby D, McComb K (2010) Size communication in domestic dog, Canis familiaris, growls. Anim Behav 79:205–210CrossRefGoogle Scholar
  52. Vannoni E, McElligott AG (2008) Low frequency groans indicate larger and more dominant fallow deer (Dama dama) males. PLoS One 3(9):e3113PubMedCrossRefGoogle Scholar
  53. von Kriegstein K, Warren JD, Ives DT, Patterson RD, Griffiths TD (2006) Processing the acoustic effect of size in speech sounds. NeuroImage 32(1):368–375CrossRefGoogle Scholar
  54. Weiss DJ, Hauser MD (2002) Perception of harmonics in the combination long call of cottontop tamarins, Saguinus oedipus. Anim Behav 64:415–426CrossRefGoogle Scholar
  55. Wiley RH (2003) Is there an ideal behavioural experiment? Anim Behav 66:585–588CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Benjamin D. Charlton
    • 1
  • William A. H. Ellis
    • 2
  • Rebecca Larkin
    • 3
  • W. Tecumseh Fitch
    • 1
  1. 1.Department of Cognitive BiologyUniversity of ViennaViennaAustria
  2. 2.Koala Research Centre of Central QueenslandCQ UniversityRockhamptonAustralia
  3. 3.Department of Environment and Resource ManagementMoggill Koala HospitalBrisbaneAustralia

Personalised recommendations