Animal Cognition

, Volume 15, Issue 2, pp 223–238 | Cite as

How does cognition evolve? Phylogenetic comparative psychology

  • Evan L. MacLean
  • Luke J. Matthews
  • Brian A. Hare
  • Charles L. Nunn
  • Rindy C. Anderson
  • Filippo Aureli
  • Elizabeth M. Brannon
  • Josep Call
  • Christine M. Drea
  • Nathan J. Emery
  • Daniel B. M. Haun
  • Esther Herrmann
  • Lucia F. Jacobs
  • Michael L. Platt
  • Alexandra G. Rosati
  • Aaron A. Sandel
  • Kara K. Schroepfer
  • Amanda M. Seed
  • Jingzhi Tan
  • Carel P. van Schaik
  • Victoria Wobber
Original Paper

Abstract

Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

Keywords

Phylogenetic comparative methods Evolution Adaptation Phylogeny Function Cognitive evolution Selective pressure 

Notes

Acknowledgments

We thank Sara Shettleworth and two anonymous reviewers for their helpful comments on a previous draft of this article. We thank Natalie Cooper for advice regarding phylogenetic comparative methods. This work was supported by the National Evolutionary Synthesis Center (NESCent) through support of a working group lead by Charlie Nunn and Brian Hare. NESCent is supported by the NSF #EF-0905606. This work was also supported in part by European Research Commission Advanced Grant Agreement 233297 and National Science Foundation grants NSF-BCS-08-27552-02 and NSF-BCS-10-25172 to B.A.H. and National Science Foundation grant NSF- BCS-0923791 to C.L.N. For training in phylogenetic comparative methods, we thank the AnthroTree Workshop (supported by NSF BCS-0923791).

References

  1. Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evol Ecol Res 1:895–909Google Scholar
  2. Albiach-Serrano A, Guillen-Salazar F, Call J (2007) Mangabeys (Cercocebus torquatus lunulatus) solve the reverse contingency task without a modified procedure. Anim Cogn 10(4):387–396PubMedCrossRefGoogle Scholar
  3. Amici F, Aureli F, Call J (2008) Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Curr Biol 18(18):1415–1419PubMedCrossRefGoogle Scholar
  4. Amici F, Call J, Aureli F (2009) Variation in withholding of information in three monkey species. Proc R Soc B-Biol Sci 276(1671):3311–3318CrossRefGoogle Scholar
  5. Amici F, Aureli F, Call J (2010) Monkeys and Apes: are their cognitive skills really so different? Am J Phys Anthropol 143(2):188–197PubMedCrossRefGoogle Scholar
  6. Arnold C, Nunn CL (2010) Phylogenetic targeting of research effort in evolutionary biology. Am Nat 176:601–612Google Scholar
  7. Arnold C, Matthews LJ, Nunn CL (2010) The 10k trees website: a new online resource for primate phylogeny. Evol Anthropol 19(3):114–118CrossRefGoogle Scholar
  8. Atlas Collaboration (2010) Charged-particle multiplicities in pp interactions at root s = 900 GeV measured with the ATLAS detector at the LHC ATLAS collaboration. Phys Lett B 688(1):21–42CrossRefGoogle Scholar
  9. Aureli F, Shaffner C, Boesch C, Bearder S, Call J, Chapman C, Connor R, Di Fiore A, Dunbar RIM, Henzi SP (2008) Fission-fusion dynamics: new research frameworks. Curr Anthropol 49(4):627–654CrossRefGoogle Scholar
  10. Balda RP, Kamil AC (1989) A comparative-study of cache recovery by 3 Corvid species. Anim Behav 38:486–495CrossRefGoogle Scholar
  11. Balda RP, Kamil AC (2006) Linking life zones, life history traits, ecology, and spatial cognition in four allopatric southwestern seed caching corvids. In: Brown MF, Cook RG (eds) Animal spatial cognition: comparative, neural, and computational approaches. http://www.pigeon.psy.tufts.edu/asc/balda/
  12. Banerjee K, Chabris CF, Johnson VE, Lee JJ, Tsao F, Hauser MD (2009) General intelligence in another primate: individual differences across cognitive task performance in a new world monkey (Saguinus oedipus). Plos One 4(6):e5883PubMedCrossRefGoogle Scholar
  13. Barrett L, Henzi P (2005) The social nature of primate cognition. Proc R Soc B-Biol Sci 272(1575):1865–1875CrossRefGoogle Scholar
  14. Barrett L, Dunbar RIM, Lycett J (2002) Human evolutionary psychology. Princeton University Press, PrincetonGoogle Scholar
  15. Barton RA (1996) Neocortex size and behavioural ecology in primates. Proc R Soc Lond Ser B Biol Sci 263(1367):173–177Google Scholar
  16. Barton RA (1998) Visual specialization and brain evolution in primates. Proc R Soc Lond Ser B-Biol Sci 265(1409):1933–1937CrossRefGoogle Scholar
  17. Baum D (2008) Reading a phylogenetic tree: the meaning of monophyletic groups. Nat Educ 1(1)Google Scholar
  18. Baum DA, Smith SD, Donovan SSS (2005) Evolution—the tree-thinking challenge. Science 310(5750):979–980PubMedCrossRefGoogle Scholar
  19. Beach FA (1950) The snark was a boojum. Am Psychol 5:115–124CrossRefGoogle Scholar
  20. Bekoff M, Allen C, Burghardt GM (2002) The cognitive animal: empirical and theoretical perspectives on animal cognition. MIT Press, CambridgeGoogle Scholar
  21. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2010) GenBank. Nucleic Acids Res 38:D46–D51PubMedCrossRefGoogle Scholar
  22. Bitterman ME (1960) Toward a comparative psychology of learning. Am Psychol 15(11):704–712CrossRefGoogle Scholar
  23. Bitterman ME (1965) Phyletic differences in learning. Am Psychol 20(6):396–410PubMedCrossRefGoogle Scholar
  24. Bitterman ME (1975) The comparative analysis of learning. Science 188(4189):699–709PubMedCrossRefGoogle Scholar
  25. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745PubMedGoogle Scholar
  26. Bond AB, Kamil AC, Balda RP (2003) Social complexity and transitive inference in corvids. Anim Behav 65:479–487CrossRefGoogle Scholar
  27. Bond AB, Wei CA, Kamil AC (2010) Cognitive representation in transitive inference: a comparison of four corvid species. Behav Process 85(3):283–292CrossRefGoogle Scholar
  28. Burke D, Cieplucha C, Cass J, Russell F, Fry G (2002) Win-shift and win-stay learning in the short-beaked echidna (Tachyglossus aculeatus). Anim Cogn 5(2):79–84PubMedCrossRefGoogle Scholar
  29. Byrne RW, Whiten AW (1988) Machiavellian intelligence: social expertise and the evolution of intellect in monkeys, apes, and humans. Clarendon Press, OxfordGoogle Scholar
  30. Cann HM et al (2002) A human genome diversity cell line panel. Science 296(5566):261–262PubMedCrossRefGoogle Scholar
  31. Cheney DL, Seyfarth RM (1990) How monkeys see the world: inside the mind of another species. University of Chicago Press, ChicagoGoogle Scholar
  32. Clayton NS, Krebs JR (1994) Memory for spatial and object-specific cues in food-storing and nonstoring birds. J Comp Physiol Sens Neural Behav Physiol 174(3):371–379Google Scholar
  33. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284(5420):1670–1672PubMedCrossRefGoogle Scholar
  34. Czeschlik T (1998) Animal cognition—the phylogeny and ontogeny of cognitive abilities. Anim Cogn 1(1):1–2CrossRefGoogle Scholar
  35. Darwin C (1859) On the origin of species by means of natural selection, or preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  36. Darwin C (1872) Expression emotion in man and animals. John Murray, LondonCrossRefGoogle Scholar
  37. de Waal FBM, Tyack PL (2003) Animal social complexity: intelligence, culture, and individualized societies. Harvard University Press, CambridgeGoogle Scholar
  38. Deaner RO, Nunn CL, van Schaik CP (2000) Comparative tests of primate cognition: different scaling methods produce different results. Brain Behav Evol 55(1):44–52PubMedCrossRefGoogle Scholar
  39. Deaner R, van Schaik C, Johnson V (2006) Do some taxa have better domain-general cognition than others? A meta-analysis of nonhuman primate studies. Evol Psychol 4:149–196Google Scholar
  40. Deaner RO, Isler K, Burkart J, van Schaik C (2007) Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol 70(2):115–124PubMedCrossRefGoogle Scholar
  41. Diamond A (1990) Developmental time course in human infants and infant monkeys, and the neural bases of, inhibitory control in reaching. Ann N Y Acad Sci 608:637–669; discussion 669–676Google Scholar
  42. Drea CM, Carter AN (2009) Cooperative problem solving in a social carnivore. Anim Behav 78(4):967–977CrossRefGoogle Scholar
  43. Dunbar RI (1992) Neocortex size as a constraint on group size in primates. J Hum Evol 20:469–493CrossRefGoogle Scholar
  44. Dunbar RI (1998) The social brain hypothesis. Evol Anthropol 6(5):178–190CrossRefGoogle Scholar
  45. Dunbar RI, Shultz S (2007) Evolution in the social brain. Science 317(5843):1344–1347PubMedCrossRefGoogle Scholar
  46. Emery NJ, Clayton NS (2004) The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306(5703):1903–1907PubMedCrossRefGoogle Scholar
  47. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15CrossRefGoogle Scholar
  48. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, SunderlandGoogle Scholar
  49. Fitch WT, Huber L, Bugnyar T (2010) Social cognition and the evolution of language: constructing cognitive phylogenies. Neuron 65(6):795–814PubMedCrossRefGoogle Scholar
  50. Fragaszy DM, Perry S (2003) The biology of traditions: models and evidence. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  51. Franz M, Nunn CL (2009) Rapid evolution of social learning. J Evol Biol 22(9):1914–1922PubMedCrossRefGoogle Scholar
  52. Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160(6):712–726PubMedCrossRefGoogle Scholar
  53. Fredman T, Whiten A (2008) Observational learning from tool using models by human-reared and mother-reared capuchin monkeys (Cebus apella). Anim Cogn 11(2):295–309PubMedCrossRefGoogle Scholar
  54. Galef BG, Laland KN (2005) Social learning in animals: empirical studies and theoretical models. Bioscience 55(6):489–499CrossRefGoogle Scholar
  55. Gallup GG (1970) Chimpanzees: self-recognition. Science 167(3914):86Google Scholar
  56. Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41(1):18–32Google Scholar
  57. Garland T, Midford PE, Ives AR (1999) An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Am Zool 39(2):374–388Google Scholar
  58. Garland T, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. J Exp Biol 208(16):3015–3035PubMedCrossRefGoogle Scholar
  59. Grafen A (1989) The phylogenetic regression. Philos Trans R Soc Lond Ser B-Biol Sci 326(1233):119–157CrossRefGoogle Scholar
  60. Griffin DR (1978) Prospects for a cognitive ethology. Behav Brain Sci 1(4):527–538CrossRefGoogle Scholar
  61. Grosenick L, Clement TS, Fernald RD (2007) Fish can infer social rank by observation alone. Nature 445(7126):429–432PubMedCrossRefGoogle Scholar
  62. Harcourt AH, de Waal FBM (1992) Coalitions and alliances in humans and other animals. Oxford University Press, OxfordGoogle Scholar
  63. Hare B (2007) From nonhuman to human mind—what changed and why? Curr Direct Psychol Sci 16(2):60–64CrossRefGoogle Scholar
  64. Hare B (2011) From hominoid to hominid mind: what changed and why? Ann Rev Anthropol 40:293–309CrossRefGoogle Scholar
  65. Hare B, Brown M, Williamson C, Tomasello M (2002) The domestication of social cognition in dogs. Science 298(5598):1634–1636PubMedCrossRefGoogle Scholar
  66. Hare B, Plyusnina I, Ignacio N, Schepina O, Stepika A, Wrangham R, Trut L (2005) Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication. Curr Biol 15(3):226–230PubMedCrossRefGoogle Scholar
  67. Hare B, Melis AP, Woods V, Hastings S, Wrangham R (2007) Tolerance allows bonobos to outperform Chimpanzees on a cooperative task. Curr Biol 17(7):619–623PubMedCrossRefGoogle Scholar
  68. Harlow HF (1953) Mice, monkeys, men, and motives. Psychol Rev 60(1):23–32PubMedCrossRefGoogle Scholar
  69. Harlow HF, Harlow MK, Meyer DR (1950) Learning motivated by a manipulation drive. J Exp Psychol 40(2):228–234PubMedCrossRefGoogle Scholar
  70. Harmon L, Weir J, Brock C, Glor R, Challenger W, Hunt G (2009) geiger: analysis of evolutionary diversificationGoogle Scholar
  71. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford series in ecology and evolution, vol 1. Oxford University Press, OxfordGoogle Scholar
  72. Harvey PH, Brown AJL, Smith JM, Nee S (eds) (1996) New uses for new phylogenies. Oxford University Press, New YorkGoogle Scholar
  73. Haun DBM, Jordan FM, Vallortigara G, Clayton NS (2010) Origins of spatial, temporal and numerical cognition: insights from comparative psychology. Trends Cogn Sci 14(12):552–560PubMedCrossRefGoogle Scholar
  74. Hauser MD (1996) The evolution of communication. MIT Press, CambridgeGoogle Scholar
  75. Hauser MD (1999) Perseveration, inhibition and the prefrontal cortex: a new look. Curr Opin Neurobiol 9(2):214–222PubMedCrossRefGoogle Scholar
  76. Healy SD, Rowe C (2007) A critique of comparative studies of brain size. Proc R Soc B-Biol Sci 274(1609):453–464CrossRefGoogle Scholar
  77. Heilbronner SR, Rosati AG, Stevens JR, Hare B, Hauser MD (2008) A fruit in the hand or two in the bush? Divergent risk preferences in Chimpanzees and bonobos. Biol Lett 4(3):246–249PubMedCrossRefGoogle Scholar
  78. Henrich J, Boyd R, Bowles S, Camerer C, Fehr E, Gintis H, McElreath R, Alvard M, Barr A, Ensminger J, Henrich NS, Hill K, Gil-White F, Gurven M, Marlowe FW, Patton JQ, Tracer D (2005) “Economic man” in cross-cultural perspective: behavioral experiments in 15 small-scale societies. Behav Brain Sci 28(6):795Google Scholar
  79. Herrmann E, Call J, Hernandez-Lloreda MV, Hare B, Tomasello M (2007) Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317(5843):1360–1366PubMedCrossRefGoogle Scholar
  80. Herrmann E, Hare B, Call J, Tomasello M (2010a) Differences in the cognitive skills of bonobos and Chimpanzees. Plos One 5(8):e12438Google Scholar
  81. Herrmann E, Hernandez-Lloreda MV, Call J, Hare B, Tomasello M (2010b) The structure of individual differences in the cognitive abilities of children and Chimpanzees. Psychol Sci 21(1):102–110PubMedCrossRefGoogle Scholar
  82. Hodos W, Campbell CB (1969) Scala naturae—why there is no theory in comparative psychology. Psychol Rev 76(4):337Google Scholar
  83. Holekamp KE (2007) Questioning the social intelligence hypothesis. Trends Cogn Sci 11(2):65–69PubMedCrossRefGoogle Scholar
  84. Hoppitt W, Laland KN (2008) Social processes influencing learning in animals: a review of the evidence. Adv Study Behav 38:105–165Google Scholar
  85. Horner V, Whiten A (2005) Causal knowledge and imitation/emulation switching in chimpanzees (Pan trogiodytes) and children (Homo sapiens). Anim Cogn 8(3):164–181PubMedCrossRefGoogle Scholar
  86. Huelsenbeck JP, Rannala B, Masly JP (2000) Accommodating phylogenetic uncertainty in evolutionary studies. Science 288(5475):2349–2350PubMedCrossRefGoogle Scholar
  87. Huffman MA, Spiezio C, Sgaravatti A, Leca JB (2010) Leaf swallowing behavior in chimpanzees (Pan troglodytes): biased learning and the emergence of group level cultural differences. Anim Cogn 13(6):871–880PubMedCrossRefGoogle Scholar
  88. Humphrey NK (1976) The social function of intellect. In: Bateson PPG, Hinde RA (eds) Growing points in ethology. Cambridge University Press, Cambridge, pp 303–317Google Scholar
  89. Isler K, van Schaik CP (2009) The expensive brain: a framework for explaining evolutionary changes in brain size. J Hum Evol 57(4):392–400PubMedCrossRefGoogle Scholar
  90. Isler K, Christopher Kirk E, Miller JMA, Albrecht GA, Gelvin BR, Martin RD (2008) Endocranial volumes of primate species: scaling analyses using a comprehensive and reliable data set. J Hum Evol 55(6):967–978PubMedCrossRefGoogle Scholar
  91. Ives AR, Midford PE, Garland T (2007) Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol 56(2):252–270PubMedCrossRefGoogle Scholar
  92. Jaakkola K, Guarino E, Rodriguez M, Erb L, Trone M (2010) What do dolphins (Tursiops truncatus) understand about hidden objects? Anim Cogn 13(1):103–120PubMedCrossRefGoogle Scholar
  93. Jacobs LF, Spencer WD (1994) Natural space-use patterns and hippocampal site in kangaroo rats. Brain Behav Evol 44(3):125–132PubMedCrossRefGoogle Scholar
  94. Jolly A (1966) Lemur social behavior and primate intelligence. Science 153:501–506PubMedCrossRefGoogle Scholar
  95. Kamil AC (1998) On the proper definition of cognitive ethology. In: Balda RP, Pepperberg IM, Kamil AC (eds) Animal cognition in nature. Academic Press, San Diego, pp 1–28CrossRefGoogle Scholar
  96. Kaminski J, Riedel J, Call J, Tomasello M (2005) Domestic goats, Capra hircus, follow gaze direction and use social cues in an object choice task. Anim Behav 69:11–18CrossRefGoogle Scholar
  97. Kendal RL, Kendal JR, Hoppitt W, Laland KN (2009) Identifying social learning in animal populations: a new ‘Option-Bias’ method. Plos One 4(8):e6541Google Scholar
  98. Kuba MJ, Byrne RA, Burghardt GM (2010) A new method for studying problem solving and tool use in stingrays (Potamotrygon castexi). Anim Cogn 13(3):507–513PubMedCrossRefGoogle Scholar
  99. Kummer H, Daston L, Gigerenzer G, Silk J (1997) The social intelligence hypothesis. In: Weingart P, Mitchell SD, Richerson PJ, Maasen S (eds) Human by nature: between biology and the social sciences. Lawrence Erlbaum Associates, Mahwah, pp 157–179Google Scholar
  100. Langer J (2006) The heterochronic evolution of primate cognitive development. Biol Theory 1(1):41–43CrossRefGoogle Scholar
  101. Lefebvre L, Whittle P, Lascaris E, Finkelstein A (1997) Feeding innovations and forebrain size in birds. Anim Behav 53:549–560CrossRefGoogle Scholar
  102. Lewejohann L, Reinhard C, Schrewe A, Brandewiede J, Haemisch A, Gortz N, Schachner M, Sachser N (2006) Environmental bias? Effects of housing conditions, laboratory environment and experimenter on behavioral tests. Genes Brain Behav 5(1):64–72PubMedCrossRefGoogle Scholar
  103. Lewejohann L, Pickel T, Sachser N, Kaiser S (2010) Wild genius—domestic fool? Spatial learning abilities of wild and domestic guinea pigs. Front Zool 7Google Scholar
  104. Liedtke J, Werdenich D, Gajdon G, Huber L, Wanker R (2011) Big brains are not enough: performance of three parrot species in the trap-tube paradigm. Anim Cogn 14(1):143–149. doi:10.1007/s10071-010-0347-4 Google Scholar
  105. Lindenfors P, Nunn CL, Barton RA (2007) Primate brain architecture and selection in relation to sex. Bmc Biol 5Google Scholar
  106. Lockard RB (1971) Reflections on fall of comparative psychology—is there a message for us all. Am Psychol 26(2):168Google Scholar
  107. Losos JB (1999) Commentaries—uncertainty in the reconstruction of ancestral character states and limitations on the use of phylogenetic comparative methods. Anim Behav 58:1319–1324PubMedCrossRefGoogle Scholar
  108. Macdonald IMV (1997) Field experiments on duration and precision of grey and red squirrel spatial memory. Anim Behav 54:879–891PubMedCrossRefGoogle Scholar
  109. MacLean EL, Merritt DJ, Brannon EM (2008) Social organization predicts transitive reasoning in prosimian primates. Anim Behav 76(2):479–486PubMedCrossRefGoogle Scholar
  110. Macphail EM (1987) The comparative psychology of intelligence. Behav Brain Sci 10(4):645–656CrossRefGoogle Scholar
  111. Manrod JD, Hartdegen R, Burghardt GM (2008) Rapid solving of a problem apparatus by juvenile black-throated monitor lizards (Varanus albigularis albigularis). Anim Cogn 11(2):267–273PubMedCrossRefGoogle Scholar
  112. Martins EP (1996) Phylogenies and the comparative method in animal behavior. Oxford University Press, New YorkGoogle Scholar
  113. Matsuzawa T (2001) Primate origins of human cognition and behavior. Springer, New YorkCrossRefGoogle Scholar
  114. Matsuzawa T, Tomonaga M, Tanaka M (2006) Cognitive development in chimpanzees. Springer, New YorkCrossRefGoogle Scholar
  115. Matthews LJ (2009) Intragroup behavioral variation in white-fronted capuchin monkeys (Cebus albifrons): mixed evidence for social learning inferred from new and established analytical methods. Behaviour 146:295–324CrossRefGoogle Scholar
  116. Mayr E (1963) Animal species and evolution. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  117. Miklosi A, Soproni K (2006) A comparative analysis of animals’ understanding of the human pointing gesture. Anim Cogn 9(2):81–93PubMedCrossRefGoogle Scholar
  118. Mischel W, Shoda Y, Rodriguez ML (1989) Delay of gratification in children. Science 244(4907):933–938PubMedCrossRefGoogle Scholar
  119. Moffitt TE, Arseneault L, Belsky D, Dickson N, Hancox RJ, Harrington H, Houts R, Poulton R, Roberts BW, Ross S, Sears MR, Thomson WM, Caspi A (2011) A gradient of childhood self-control predicts health, wealth, and public safety. Proc Natl Acad Sci USA 108(7):2693–2698. doi:10.1073/pnas.1010076108
  120. Morgan CL (1894) An introduction to comparative psychology. The Contemporary science series, vol 27. Walter Scott, LondonGoogle Scholar
  121. Muller CA (2010) Do anvil-using banded mongooses understand means-end relationships? A field experiment. Anim Cogn 13(2):325–330PubMedCrossRefGoogle Scholar
  122. Nunn CL (2011) The comparative approach in evolutionary anthropology and biology. The University of Chicago Press, ChicagoGoogle Scholar
  123. Nunn CL, Barton RA (2001) Comparative methods for studying primate adaptation and allometry. Evol Anthropol 10(3):81–98CrossRefGoogle Scholar
  124. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401(6756):877–884PubMedCrossRefGoogle Scholar
  125. Pagel M, Lutzoni F (2002) Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation. In: Lässig M, Valleriani A (eds) Biological evolution and statistical physics. Springer, Berlin, pp 148–161CrossRefGoogle Scholar
  126. Pagel M, Meade A (2006) Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am Nat 167(6):808–825CrossRefGoogle Scholar
  127. Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol 53(5):673–684PubMedCrossRefGoogle Scholar
  128. Papini MR (2002) Pattern and process in the evolution of learning. Psychol Rev 109(1):186–201PubMedCrossRefGoogle Scholar
  129. Paradis E, Claude J, Strimmer K (2004) Analyses of phylogenetics and evolution. Bioinformatics 20:289–290PubMedCrossRefGoogle Scholar
  130. Parker ST, McKinney ML (1999) Origins of intelligence: the evolution of cognitive development in monkeys, apes, and humans. Johns Hopkins University Press, BaltimoreGoogle Scholar
  131. Paz-y-Miño CG, Bond AB, Kamil AC, Balda RP (2004) Pinyon jays use transitive inference to predict social dominance. Nature 430(7001):778–781CrossRefGoogle Scholar
  132. Piaget J (1954) The construction of reality in the child. Basic Books, New YorkGoogle Scholar
  133. Plotnik JM, de Waal FBM, Reiss D (2006) Self-recognition in an Asian elephant. Proc Natl Acad Sci USA 103(45):17053–17057PubMedCrossRefGoogle Scholar
  134. Povinelli DJ (1993) Reconstructing the evolution of mind. Am Psychol 48(5):493–509PubMedCrossRefGoogle Scholar
  135. Povinelli DJ, Rulf AB, Landau KR, Bierschwale DT (1993) Self-recognition in chimpanzees (pan troglodytes)—distribution, ontogeny, and patterns of emergence. J Comp Psychol 107(4):347–372PubMedCrossRefGoogle Scholar
  136. Pravosudov VV, Smulders TV (2010) Integrating ecology, psychology and neurobiology within a food-hoarding paradigm. Philos Trans R Soc B-Biol Sci 365(1542):859–867CrossRefGoogle Scholar
  137. Proops L, Burden F, Osthaus B (2009) Mule cognition: a case of hybrid vigour? Anim Cogn 12(1):75–84PubMedCrossRefGoogle Scholar
  138. Proops L, Walton M, McComb K (2010) The use of human-given cues by domestic horses, Equus caballus, during an object choice task. Anim Behav 79(6):1205–1209CrossRefGoogle Scholar
  139. R Development Core Team (2011) R: a language and environment for statistical computing. Vienna, AustriaGoogle Scholar
  140. Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci 99(7):4436–4441PubMedCrossRefGoogle Scholar
  141. Reader SM, Hager Y, Laland KN (2011) The evolution of primate general and cultural intelligence. Philos Trans R Soc B-Biol Sci 366(1567):1017–1027CrossRefGoogle Scholar
  142. Rendell L, Fogarty L, Hoppitt WJE, Morgan TJH, Webster MM, Laland KN (2011) Cognitive culture: theoretical and empirical insights into social learning strategies. Trends Cogn Sci 15(2):68–76PubMedCrossRefGoogle Scholar
  143. Revell LJ (2010) Phylogenetic signal and linear regression on species data. Methods Ecol Evol 1(4):319–329CrossRefGoogle Scholar
  144. Richter SH, Garner JP, Zipser B, Lewejohann L, Sachser N, Touma C, Schindler B, Chourbaji S, Brandwein C, Gass P, van Stipdonk N, van der Harst J, Spruijt B, Voikar V, Wolfer DP, Wurbel H (2011) Effect of population heterogenization on the reproducibility of mouse behavior: a multi-laboratory study. Plos One 6(1):e16461Google Scholar
  145. Rohlf FJ (2006) A comment on phylogenetic correction. Evolution 60(7):1509–1515PubMedCrossRefGoogle Scholar
  146. Rosati AG, Hare B (2009) Looking past the model species: diversity in gaze-following skills across primates. Curr Opin Neurobiol 19(1):45–51PubMedCrossRefGoogle Scholar
  147. Rosati AG, Hare B (2011) Chimpanzees and bonobos distinguish between risk and ambiguity. Biol Lett 7(1):15–18PubMedCrossRefGoogle Scholar
  148. Rumbaugh DM, Pate JL (1984) The evolution of cognition in primates: a comparative perspective. In: Roitblat L, Bever TG, Terrace HS (eds) Animal cognition. Lawrence Erlbaum Associates, Hillsdale, pp 569–587Google Scholar
  149. Sandel AA, MacLean E, Hare B (2011) Evidence from four lemur species that ringtailed lemur social cognition converges with that of haplorhine primates. Anim Behav 81:925–931CrossRefGoogle Scholar
  150. Savage A, Snowdon CT (1989) Apples and oranges—the pitfalls of comparative intelligence. Behav Brain Sci 12(3):605–606CrossRefGoogle Scholar
  151. Schluter D, Price T, Mooers AO, Ludwig D (1997) Likelihood of ancestor states in adaptive radiation. Evolution 51(6):1699–1711CrossRefGoogle Scholar
  152. Sherry DF, Jacobs LF, Gaulin SJC (1992) Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci 15(8):298–303PubMedCrossRefGoogle Scholar
  153. Shettleworth SJ (1990) Spatial memory in food-storing birds. Philos Trans R Soc B-Biol Sci 329(1253):143–151CrossRefGoogle Scholar
  154. Shettleworth SJ (1995) Comparative studies of memory in food storing birds: from the field to the Skinner box. In: Alleva E, Fasolo A, Lipp HP, Nadel L, Ricceri L (eds) Behavioral brain research in naturalistic and semi-naturalistic settings. Kluwer, Dordrecht, pp 159–192CrossRefGoogle Scholar
  155. Shettleworth SJ (2009) The evolution of comparative cognition: is the snark still a boojum? Behav Process 80(3):210–217CrossRefGoogle Scholar
  156. Shettleworth SJ (2010) Cognition, evolution, and behavior. Oxford University Press, OxfordGoogle Scholar
  157. Shultz S, Dunbar RIM (2010) Species differences in executive function correlate with hippocampus volume and neocortex ratio across nonhuman primates. J Comp Psychol 124(3):252–260PubMedCrossRefGoogle Scholar
  158. Skinner BF (1938) The behavior of organisms: an experimental analysis. Appleton-Century-Crofts, New YorkGoogle Scholar
  159. Thierry B, Aureli F, Nunn CL, Petit O, Abegg C, De Waal FBM (2008) A comparative study of conflict resolution in macaques: insights into the nature of trait covariation. Anim Behav 75:847–860. doi:10.1016/j.anbehav.2007.07.006 Google Scholar
  160. Thorndike EL (1911) Animal intelligence; experimental studies. On cover: the animal behavior series. The Macmillan company, New YorkGoogle Scholar
  161. Tinbergen N (1963) On aims and methods of ethology. Zeitschrift für Tierpsychologie 20:410–433Google Scholar
  162. Tomasello M, Call J (1997) Primate cognition. Oxford University Press, New YorkGoogle Scholar
  163. Tomasello M, Call J (2008) Assessing the validity of ape-human comparisons: a reply to Boesch (2007). J Comp Psychol 122(4):449–452PubMedCrossRefGoogle Scholar
  164. Tomasello M, Call J, Hare B (1998) Five primate species follow the visual gaze of conspecifics. Anim Behav 55:1063–1069PubMedCrossRefGoogle Scholar
  165. Torigoe T (1985) Comparison of object manipulation among 74 species of non-human primates. Primates 26(2):182–194CrossRefGoogle Scholar
  166. Waisman AS, Jacobs LF (2008) Flexibility of cue use in the fox squirrel (Sciurus niger). Anim Cogn 11(4):625–636PubMedCrossRefGoogle Scholar
  167. Watson JB (1967) Behavior; an introduction to comparative psychology. A Henry Holt edition in psychology. Holt, New YorkGoogle Scholar
  168. Whiten A (2003) Social complexity and social intelligence. In: Bock GR, Goode JA, Webb K (eds) The nature of intelligence. John Wiley & Sons, Chichester, pp 185–201. http://onlinelibrary.wiley.com/book/10.1002/0470870850
  169. Whiten A, van Schaik CP (2007) The evolution of animal ‘cultures’ and social intelligence. Philos Trans R Soc B-Biol Sci 362(1480):603–620CrossRefGoogle Scholar
  170. Wobber VT, Hare B (2011) Psychological health of orphan bonobos and chimpanzees in African sanctuaries. Plos One 6(6):e17147PubMedCrossRefGoogle Scholar
  171. Woods V, Hare B (2010) Think outside the lab: African sanctuaries as a new resource for non-invasive research on great apes. In: Mills D (ed) Encyclopedia of animal behavior and welfare. CABI publishing, WallingfordGoogle Scholar
  172. Wright RVS (1972) Imitative learning of a flaked stone technology—the case of an orangutan. Mankind 8(4):296–306Google Scholar
  173. Yerkes RM (1943) Chimpanzees; a laboratory colony. Oxford University Press, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Evan L. MacLean
    • 1
  • Luke J. Matthews
    • 2
  • Brian A. Hare
    • 1
    • 3
  • Charles L. Nunn
    • 2
  • Rindy C. Anderson
    • 4
  • Filippo Aureli
    • 5
  • Elizabeth M. Brannon
    • 3
    • 6
  • Josep Call
    • 7
  • Christine M. Drea
    • 1
    • 4
  • Nathan J. Emery
    • 8
  • Daniel B. M. Haun
    • 7
    • 9
    • 10
  • Esther Herrmann
    • 7
  • Lucia F. Jacobs
    • 11
  • Michael L. Platt
    • 1
    • 3
    • 12
  • Alexandra G. Rosati
    • 1
    • 3
  • Aaron A. Sandel
    • 13
  • Kara K. Schroepfer
    • 1
  • Amanda M. Seed
    • 14
  • Jingzhi Tan
    • 1
  • Carel P. van Schaik
    • 15
  • Victoria Wobber
    • 2
  1. 1.Department of Evolutionary AnthropologyDuke UniversityDurhamUSA
  2. 2.Department of Human Evolutionary BiologyHarvard UniversityCambridgeUSA
  3. 3.Center for Cognitive NeuroscienceDuke UniversityDurhamUSA
  4. 4.Biology DepartmentDuke UniversityDurhamUSA
  5. 5.Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
  6. 6.Psychology and NeuroscienceDuke UniversityDurhamUSA
  7. 7.Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
  8. 8.School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK
  9. 9.Max Planck Institute for PsycholinguisticsNijmegenThe Netherlands
  10. 10.Department of PsychologyUniversity of PortsmouthPortsmouthUK
  11. 11.Department of PsychologyUniversity of CaliforniaBerkeleyUSA
  12. 12.Department of NeurobiologyDuke University Medical CenterDurhamUSA
  13. 13.Department of AnthropologyUniversity of MichiganAnn ArborUSA
  14. 14.School of PsychologyUniversity of St AndrewsScotlandUK
  15. 15.Anthropological Institute and MuseumUniversity of ZürichZurichSwitzerland

Personalised recommendations