Advertisement

Animal Cognition

, 14:915 | Cite as

Do inexperienced bumblebee foragers use scent marks as social information?

  • Ellouise Leadbeater
  • Lars Chittka
Short Communication

Abstract

Bumblebees (Bombus spp.) foraging in the field typically reject flowers where they detect the olfactory footprints of previous visitors and hence avoid recently emptied inflorescences. A growing number of studies have begun to illustrate that associative learning shapes the development of this process, in both bumblebees and other bee species. This raises the question of what the default response to such marks is, but little is known about how inexperienced foragers use social information. Here, we offered flower-naive bees a choice between scent-marked flowers and unmarked alternatives and found that individuals neither avoided nor preferred marked flowers. Our findings provide no support for ‘hard-wired’ responses to scent marks in bumblebees and highlight the importance of associative learning in shaping social information use to match local circumstances.

Keywords

Scent marks Bumblebee foraging Cuticular hydrocarbons Bumblebee learning Social information 

Notes

Acknowledgments

We thank Syngenta Bioline Bees, Weert, the Netherlands for kindly providing research bees for free.

References

  1. Arenas A, Fernandez VM, Farina WM (2009) Associative learning during early adulthood enhances later memory retention in honeybees. Plos One 4(12):8. doi: e804610.1371/journal.pone.0008046 CrossRefGoogle Scholar
  2. Bos N, Guerrieri FJ, D’Ettorre P (2010) Significance of chemical recognition cues is context dependent in ants. Anim Behav 80(5):839–844CrossRefGoogle Scholar
  3. Cameron SA (1981) Chemical signals in bumble bee foraging. Behav Ecol Sociobiol 9(4):257–260CrossRefGoogle Scholar
  4. Chittka L (1998) Sensorimotor learning in bumblebees: long-term retention and reversal training. J Exp Biol 201(4):515–524Google Scholar
  5. Crawley MJ (2007) The R book. Wiley, ChichesterCrossRefGoogle Scholar
  6. Eltz T (2006) Tracing pollinator footprints on natural flowers. J Chem Ecol 32(5):907–915PubMedCrossRefGoogle Scholar
  7. Gamboa GJ (1996) Kin recognition in social wasps. In: Turillazzi S, West-Eberhart MJ (eds) Natural history and evolution of paper-wasps. Oxford Science, Oxford, pp 161–177Google Scholar
  8. Giurfa M (1993) The repellent scent-mark of the honeybee Apis-Mellifera-Ligustica and its role as communication cue during foraging. Insect Soc 40(1):59–67CrossRefGoogle Scholar
  9. Giurfa M, Núñez JA (1992) Honeybees mark with scent and reject recently visited flowers. Oecologia 89:113–117CrossRefGoogle Scholar
  10. Giurfa M, Núñez JA, Chittka L, Menzel R (1995) Colour preferences of flower-naive honeybees. J Comp Physiol A-Sens Neural Behav Physiol 177(3):247–259Google Scholar
  11. Goulson D, Hawson SA, Stout JC (1998) Foraging bumblebees avoid flowers already visited by conspecific or by other bumblebee species. Anim Behav 55:199–206PubMedCrossRefGoogle Scholar
  12. Goulson D, Stout JC, Langley J, Hughes WOH (2000) Identity and function of scent marks deposited by foraging bumblebees. J Chem Ecol 26(12):2897–2911CrossRefGoogle Scholar
  13. Goulson D, Chapman JW, Hughes WOH (2001) Discrimination of unrewarding flowers by bees; direct detection of rewards and use of repellent scent marks. J Insect Behav 14(5):669–678CrossRefGoogle Scholar
  14. Kachitvichyanukul V, Schmeiser BW (1988) Binomial random variate generation. Commun ACM 31:216–222CrossRefGoogle Scholar
  15. Leadbeater E, Chittka L (2005) A new mode of information transfer in foraging bumblebees? Curr Biol 15(12):R447–R448PubMedCrossRefGoogle Scholar
  16. Leadbeater E, Chittka L (2009) Bumble-bees learn the value of social cues through experience. Biol Lett 5(3):310–312. doi: 10.1098/rsbl.2008.0692 PubMedCrossRefGoogle Scholar
  17. Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumble bees and their implications for colour perception. J Comp Physiol A-Sens Neural Behav Physiol 178(4):477–489Google Scholar
  18. Menzel R (2001) Behavioural and neural mechanisms of learning and memory as determinants of flower constancy. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination: animal behaviour and floral evolution. Cambridge University Press, Cambridge, pp 21–40CrossRefGoogle Scholar
  19. Nieh JC (2004) Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 35(2):159–182CrossRefGoogle Scholar
  20. Nieh JC (2009) Convergent evolution of food recruitment mechanisms in wasps and bees. In: Gadau J, Fewell J (eds) Organization of insect societies: from genome to sociocomplexity. Harvard University Press, Cambridge, pp 264–286Google Scholar
  21. Plowright CMS, Simonds VM, Butler MA (2006) How bumblebees first find flowers: habituation of visual pattern preferences, spontaneous recovery, and dishabituation. Learn Motiv 37(1):66–78. doi: 10.1016/j.lmot.2005.03.002 CrossRefGoogle Scholar
  22. Raine NE, Ings TC, Ramos-Rodriguez O, Chittka L (2006) Intercolony variation in learning performance of a wild British bumblebee population (Hymenoptera : Apidae : Bombus terrestris audax). Entomol Gen 28(4):241–256Google Scholar
  23. Reichle C, Aguilar I, Ayasse M, Jarau S (2011) Stingless bees (Scaptotrigona pectoralis) learn foreign trail pheromones and use them to find food. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(3):243–249. doi: 10.1007/s00359-010-0605-6 PubMedCrossRefGoogle Scholar
  24. Rodríguez I, Gumbert A, Hempel de Ibarra N, Kunze J, Giurfa M (1994) Symmetry is in the eye of the ‘bee holder’: innate preference for bilateral symmetry in flower-naïve bumblebees. Naturwissenschaften 91(8):374–377Google Scholar
  25. Saleh N, Chittka L (2006) The importance of experience in the interpretation of conspecific chemical signals. Behav Ecol Sociobiol 61(2):215–220CrossRefGoogle Scholar
  26. Saleh N, Chittka L (2007) Bumblebees use incidental footprints to generate adaptive behaviour at flowers and nest. Arthropod-Plant Interact 1:119–127CrossRefGoogle Scholar
  27. Saleh N, Ohashi K, Thomson JD, Chittka L (2006) Facultative use of the repellent scent mark in foraging bumblebees: complex versus simple flowers. Anim Behav 71:847–854CrossRefGoogle Scholar
  28. Sanchez D, Nieh JC, Vandame R (2008) Experience-based interpretation of visual and chemical information at food sources in the stingless bee Scaptotrigona mexicana. Anim Behav 76:407–414. doi: 10.1016/j.anbehav.2008.04.003 CrossRefGoogle Scholar
  29. Schmitt U, Bertsch A (1990) Do foraging bumblebees scent mark food sources and does it matter? Oecologia 82:137–144CrossRefGoogle Scholar
  30. Schmitt U, Lubke G, Francke W (1991) Tarsal secretion marks food sources in bumblebees (Hymenoptera: Apidae). Chemoecology 2:35–40CrossRefGoogle Scholar
  31. Seguin FR, Plowright CMS (2008) Assessment of pattern preferences by flower-naive bumblebees. Apidologie 39(2):215–224. doi: 10.1051/apido:2007056 CrossRefGoogle Scholar
  32. Stout JC, Goulson D (2001) The use of conspecific and interspecific scent marks by foraging bumblebees and honeybees. Anim Behav 62:183–189CrossRefGoogle Scholar
  33. Stout JC, Goulson D (2002) The influence of nectar secretion rates on the responses of bumblebees (Bombus spp.) to previously visited flowers. Behav Ecol Sociobiol 52(3):239–246CrossRefGoogle Scholar
  34. Stout JC, Goulson D, Allen JA (1998) Repellent scent-marking of flowers by a guild of foraging bumblebees (Bombus spp.). Behav Ecol Sociobiol 43(4–5):317–326CrossRefGoogle Scholar
  35. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  36. van Zweden J, D’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist G, Bagneres AG (eds) Insect hydrocarbons. Cambridge University Press, CambridgeGoogle Scholar
  37. Wilms J, Eltz T (2008) Foraging scent marks of bumblebees: footprint cues rather than pheromone signals. Naturwissenschaften 95(2):149–153. doi: 10.1007/s00114-007-0298-z PubMedCrossRefGoogle Scholar
  38. Witjes S, Eltz T (2007) Influence of scent deposits on flower choice: experiments in an artificial flower array with bumblebees. Apidologie 38(1):12–18. doi: 10.1051/apido:2006048 CrossRefGoogle Scholar
  39. Witjes S, Eltz T (2009) Hydrocarbon footprints as a record of bumblebee flower visitation. J Chem Ecol 35(11):1320–1325. doi: 10.1007/s10886-009-9720-7 PubMedCrossRefGoogle Scholar
  40. Worden BD, Papaj DR (2005) Flower choice copying in bumblebees. Biol Lett 1(4):504–507PubMedCrossRefGoogle Scholar
  41. Yokoi T, Fujisaki K (2007) Repellent scent-marking behaviour of the sweat bee Halictus (Seladonia) aerarius during flower foraging. Apidologie 38(5):474–481. doi: 10.1051/apido:2007034 CrossRefGoogle Scholar
  42. Yokoi T, Fujisaki K (2009) Recognition of scent marks in solitary bees to avoid previously visited flowers. Ecol Res 24(4):803–809. doi: 10.1007/s11284-008-0551-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of ZoologyZoological Society of LondonLondonUK
  2. 2.Research Centre for Psychology, School of Biological and Chemical SciencesQueen Mary University of LondonLondonUK

Personalised recommendations