Animal Cognition

, Volume 12, Issue 2, pp 217–235 | Cite as

Tool use as a way to assess cognition: how do captive chimpanzees handle the weight of the hammer when cracking a nut?

  • Blandine BrilEmail author
  • Gilles Dietrich
  • Julie Foucart
  • Koki Fuwa
  • Satoshi Hirata
Original Paper


Tool use in apes has been considered a landmark in cognition. However, while most studies concentrate on mental operations, there are very few studies of apes’ cognition as expressed in manual skills. This paper proposes theoretical and methodological considerations on movement analysis as a way of assessing primate cognition. We argue that a privileged way of appraising the characteristics of the cognitive abilities involved in tool use lies at the functional level. This implies that we focus on how the action proceeds, and more precisely, on how the functional characteristics of the task are generated. To support our view, we present the results of an experiment with five captive chimpanzees investigating the way how chimpanzees adapt to hammers of various weights while cracking nuts. The movement performed in the hammering task is analyzed in terms of energy production. Results show that chimpanzees mobilise passive as well as active forces to perform the compliant movement, that is, they modulate the dynamics of the arm/tool system. A comparison between chimpanzees suggests that experience contributes to this skill. The results suggest that in tool use, movements are not key per se, but only in as much as they express underlying cognitive processes.


Goal oriented action Tool use Adaptation Movement reconstruction Mechanical energy Cognition Chimpanzee 



We would like to thank three anonymous reviewers for very helpful comments and suggestions. We are very grateful to Sandra Martelli for information on anthropometric data on Chimpanzees. This research has been supported by the Action Concertée Incitative TTT P7802 n° 02 2 0440 from the French Ministère Délégué à la Recherche et aux Nouvelles Technologies and the Ministry of Education Culture, Sports Science and Technology of Japan (grant for the Biodiversity Research of the 21st century COE, A14).

Supplementary material

MOESM1 Example of a chimpanzee cracking a Macadamia nut and a Brazil nut with a hammer weighing 0.327 kg (MPG 6102 kb)


  1. Ambrose SH (2001) Paleolithic technology and human evolution. Science 291:1748–1753PubMedCrossRefGoogle Scholar
  2. Anderson ML (2003) Embodied cognition: a field guide. Artif Intell 149:91–130CrossRefGoogle Scholar
  3. Beatty H (1951) A note on the behavior of the chimpanzee. J Mammal 32:118Google Scholar
  4. Bernstein NA (1996) On dexterity and its development. In: Latash ML, Turvey MT (eds) Dexterity and its development. Lawrence Erlbaum Associates, Hillsdale, pp 1–235Google Scholar
  5. Biro D, Inoue-Nakamura N, Tonooka R, Yamakoshi G, Sousa C, Matsuzawa T (2003) Cultural innovation and transmission of tool use in wild chimpanzees: evidence from field experiments. Anim Cogn 6:213–223PubMedCrossRefGoogle Scholar
  6. Biro D, Sousa C, Matsuzawa T (2006) Ontogeny and cultural propagation of tool use by wild chimpanzees at Bossou, Guinea: case studies in nut-cracking and leaf folding. In: Matsuzawa, Tomonaga, Tanaka (eds) Cognitive development in chimpanzees. Springer, Tokyo, pp 476–508Google Scholar
  7. Biryukova L, Bril B (2008) Multijoint movement kinematics characterizes the level of motor skill: the case of stone-knapping in India. Motor Control 12:181–209PubMedGoogle Scholar
  8. Boesch C (1978) Nouvelles observations sur les chimpanzés de la forêt de Taï (Côte -d’Ivoire). La Terre et la Vie 32:195–201Google Scholar
  9. Boesch C (1991) Handedness in wild chimpanzees. Int J Primatol 12(6):541–558CrossRefGoogle Scholar
  10. Boesch C, Boesch H (1981) Sex differences in the use of natural hammers by wild chimpanzees: a preliminary report. J Hum Evol 10:585–593CrossRefGoogle Scholar
  11. Boesch C, Boesch H (1982) Optimisation of nut-cracking with natural hammers by wild chimpanzees. Behaviour 83:265–286CrossRefGoogle Scholar
  12. Boesch C, Boesch H (1984) The nut-cracking behavior and its nutritional importance in wild chimpanzees in the Taï National Park, Ivory Coast. Int J Primatol 5:323Google Scholar
  13. Boesch C, Boesch H (1993) Different hand postures for pounding nuts with natural hammers by wild chimpanzees. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Sringer, Wien, pp 31–43Google Scholar
  14. Bril B, Roux V, Dietrich G (2000) Habiletés impliquées dans la taille des perles en roches dure : caractéristiques motrices et cognitives d’une action située complexe. In: Roux V (ed) Les perles de Cambay—Des pratiques techniques aux technosystèmes de l’Orient ancien. Éditions de la MSH, Paris, pp 211–329Google Scholar
  15. Bril B, Foucart J (2005) Enacting the perception of the affordances of potential tools II: the case of children hammering. In: Heft H, Marsh KL (eds) Studies in perception & action VIII—thirteenth international conference on perception and action. LEA, Mahwah, pp 3–6Google Scholar
  16. Bril B, Roux V, Dietrich G (2005) Stone knapping: Khambhat (India), a unique opportunity? In: Roux V, Bril B (eds) Stone knapping, the necessary conditions for an uniquely hominid behaviour. McDonald Institute Monograph Series, Cambridge, pp 53–72Google Scholar
  17. Byrne R (2005) The manual skills and cognition that lie behind hominid tool use. In: Russon AE, Begun DR (eds) Evolution of thought—evolutionary origins of great ape intelligence. Cambridge University Press, Cambridge, pp 31–44Google Scholar
  18. Call J, Tomasello M (1994) The social learning of tool use by orangutans (Pongo pygmaeus). Hum Evol 9:297–313CrossRefGoogle Scholar
  19. Chandler RF, Clauser CE, McConvile JT, Reynolds HM, Young JW (1975) Investigation of inertial properties of the human body. AMRL-TR-137, AD-AO16 485. Aerospace Medical Research Laboratories, Aerospace Medical Division, Wright-Patterson Air Force Base, Ohio, USAGoogle Scholar
  20. Chiel HJ, Beer RD (1997) The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci 20:553–557PubMedCrossRefGoogle Scholar
  21. Christel MI, Billard A (2002) Comparison between macaques’ and humans’ kinematics of prehension: the role of morphological differences and control mechanisms. Behav Brain Res 131:169–184PubMedCrossRefGoogle Scholar
  22. Dempster WT (1939) Space requirements of the seated operator. WADC Technical Report, Wright-Patterson Air Force BaseGoogle Scholar
  23. Foucart J (2006) Etude comparée des habiletés opératoires et motrices de l’homme et du chimpanzé pour une utilisation d’outils trans-primatique : le cassage de noix. PhD thesis. École des Hautes Études en Sciences Sociales, ParisGoogle Scholar
  24. Foucart J, Bril B, Hirata S, Morimura N, Houki C, Ueno Y, Matsuzawa T (2005a) A preliminary analysis of nut-cracking movements in a captive chimpanzee: adaptation to the properties of tools and nuts. In: Roux V, Bril B (eds) Stone knapping, the necessary conditions for an uniquely hominid behaviour. McDonald Institute Monograph Series, Cambridge, pp 147–158Google Scholar
  25. Foucart J, Hirata S, Fuwa K, Bril B (2005b) Enacting the perception of the affordances of potential tools II: the case of chimpanzees nut-cracking. In: Heft H, Marsh KL (eds) Studies in perception & action VIII—thirteenth international conference on perception and action. LEA, Mahwah, pp 10–14Google Scholar
  26. Fushimi T, Sakura O, Matsuzawa T, Ohno H, Sugiyama Y (1991) Nut-cracking behavior of wild chimpanzees (Pan troglodytes) in Bossou, Guinea (West Africa). In: Ehara A, Kimura T, Takenaka O, Iwamoto M (eds) Primatology Today. Elsevier, Amsterdam, pp 695–696Google Scholar
  27. Fujita K, Kuroshima H, Asai S (2003) How do tufted capuchin monkeys (Cebus apella) understand causality involved in tool use? J Exp Psychol Anim Behav Process 29:233–242PubMedCrossRefGoogle Scholar
  28. Gibson JJ (1977) The theory of affordances. In: Shaw R, Bransford J (eds) Perceiving, acting, and knowing. Lawrence Erlbaum Associates, Hillsdale, pp 67–82Google Scholar
  29. Gibson JJ (1986) The ecological approach to visual perception. Houghton Mifflin, BostonGoogle Scholar
  30. Günther MM, Boesch C (1993) Energetic cost of nut-cracking behaviour in wild chimpanzees. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, Wien, pp 109–129Google Scholar
  31. Hanavan EP (1964) A mathematical model of the human body. AMRL-TR-64–102, AD-608–463. Aerospace Medical Research Laboratories. Wright-Patterson Air Force Base, OhioGoogle Scholar
  32. Hannah AC, McGrew WC (1987) Chimpanzees using stones to crack open oil palm nuts in Liberia. Primates 28:31–46CrossRefGoogle Scholar
  33. Hauser MD (1997) Artifactual kinds and functional design features: what a primate understands without language. Cognition 64:285–308PubMedCrossRefGoogle Scholar
  34. Hayashi M, Mizuno Y, Matsuzawa T (2005) How does stone-tool use emerge? Introduction of stones and nuts to naïve chimpanzees in captivity. Primates 46:91–102PubMedCrossRefGoogle Scholar
  35. Hogan N (1985) The mechanics of multi-joint posture and movement. Biol Cybern 52:315–331PubMedCrossRefGoogle Scholar
  36. Inoue-Nakamura N, Matsuzawa T (1997) Development of stone tool use by wild chimpanzees (Pan troglodytes). J Comp Psychol 111:159–173PubMedCrossRefGoogle Scholar
  37. Johnson-Frey SH (2003) What’s so special about tool use? Neuron 39:201–204PubMedCrossRefGoogle Scholar
  38. Köhler W (1925) The mentality of apes. Routledge & Kegan Paul, LondonGoogle Scholar
  39. Kunde W (2001) Exploring the hyphen in ideo-motor action. Commentary on Homel et al.: theory of event coding. Behav Brain Sci 24:891–892Google Scholar
  40. Marchant LF, McGrew WC (2005) Percussive technology: Chimpanzee baobab smashing and evolutionary modelling of hominin knapping. In: Roux V, Bril B (eds) Stone knapping the necessary conditions for an uniquely hominin behaviour. McDonald Institute Monograph Series, Cambridge, pp 341–350Google Scholar
  41. Matsuzawa T (1994) Field experiments on use of stone tools by chimpanzees in the wild. In: Wrangham RW, McGrew W, de Waal FBM, Heltne PG (eds) Chimpanzee cultures. Harvard University Press, Cambridge, pp 351–370Google Scholar
  42. Michaels CF (2003) Affordances: four points of debates. Ecol Psychol 15:135–148CrossRefGoogle Scholar
  43. Nagell K, Olguin RS, Tomasello M (1993) Processes of social learning in the tool use of chimpanzees (Pan troglodytes) and human children (Homo sapiens). J Comp Psychol 107:174–186PubMedCrossRefGoogle Scholar
  44. Newell KM (1986) Constraints on the development of coordination. In: Wade MG, Whiting HT (eds) Motor development in children: aspects of coordination and control. Martinus Nijhoff, Dordrecht, pp 341–360Google Scholar
  45. Newell KM (1996) Change in movement and skill: learning, retention and transfer. In: Latash ML, Turvey MT (eds) Dexterity and its development. Lawrence Erlbaum Associates, Hillsdale, pp 393–429Google Scholar
  46. Pourcelot P, Audigie F, Degueurce C, Geiger D, Denoix JM (2000) A method to synchronise cameras using the direct linear transformation technique. J Biomech 33:1751–1754PubMedCrossRefGoogle Scholar
  47. Povinelli D (2000) Folk physics for apes. Oxford University Press, OxfordGoogle Scholar
  48. Rahm U (1971) L’emploi d’outils par les chimpanzés de l’ouest de la Côte-d’Ivoire. Terre et Vie 25:506–509Google Scholar
  49. Reed ES (1988) Applying the theory of action systems to the study of motor skills. In: Meijer OG, Roth K (eds) Complex movement behaviour: the motor-action controversy. Elsevier, Amsterdam, pp 45–86CrossRefGoogle Scholar
  50. Reed ES (1989) Changing theories of postural development. In: Woollacott M, Shumway-Cook A (eds) The development of posture across the life span. University of South Carolina Press, Columbia, pp 3–24Google Scholar
  51. Reed ES (1996) Encountering the world. Oxford University Press, OxfordGoogle Scholar
  52. Roux V, Bril B (eds) (2005) Stone knapping, the necessary conditions for an uniquely hominin behaviour. McDonald Institute Monograph Series, CambridgeGoogle Scholar
  53. Roux V, Bril B, Dietrich G (1995) Skills and learning difficulties involved in stone knapping: the case of stone-bead knapping in Khambhat, India. World Archaeol 27:63–87CrossRefGoogle Scholar
  54. Roy AC, Paulignan Y, Farne A, Jouffrais C, Boussaoud D (2000) Hand kinematics during reaching and grasping in the macaque monkey. Behav Brain Res 117:75–82PubMedCrossRefGoogle Scholar
  55. Schick K, Toth N, Garufi G (1999) Continuing investigation into the stone tool-making and tool using capabilities of a Bonobo (Pan paniscus). J Archaeol Sci 26:821–832CrossRefGoogle Scholar
  56. Schmidt RA (1975) A schema theory of discrete motor skill learning. Psychol Rev 82:225–260CrossRefGoogle Scholar
  57. Smitsman A (1997) The development of tool-use: changing boundaries between organism and environment. In: Dent-Read C, Zukow-Goldring P (eds) Evolving explanations of development. Ecological approaches to organism-environment systems. Am Psychol Assoc, Washington, pp 301–333CrossRefGoogle Scholar
  58. Smitsman A, Cox R, Bongers R (2005) Action dynamics in tool use. In: Roux V, Bril B (eds) Stone knapping, the necessary conditions for a uniquely hominid behaviour. McDonald Institute Monograph Series, Cambridge, pp 129–144Google Scholar
  59. Sugiyama Y (1981) Observations of the population dynamics and behavior of wild chimpanzees at Bossou, Guinea, in 1979–1980. Primates 22:435–444CrossRefGoogle Scholar
  60. Sugiyama Y (1993) Local variation of tools and tool use among wild chimpanzee populations. In: Berthelet A, Chavaillon J (eds) The use of tools by human and non-human primates. Clarendon Press, Oxford, pp 175–187Google Scholar
  61. Sugiyama Y, Koman J (1979) Social structure and dynamics of wild chimpanzees at Bossou, Guinea. Primates 20:323–339CrossRefGoogle Scholar
  62. Stoffregen TA (2000) Affordance and events. Ecol Psychol 12:1–28CrossRefGoogle Scholar
  63. Struhsaker TT, Hunkeler P (1971) Evidence of tool-using by chimpanzees in the Ivory Coast. Folia Primatol 15:212–219PubMedCrossRefGoogle Scholar
  64. Thelen E (1995) Motor development: a new synthesis. Am Psychol 50:79–95PubMedCrossRefGoogle Scholar
  65. Toth N, Scick K, Semaw S (2006) A comparative study of the stone tool-making of Pan, Australopithecus, and Homo sapiens. In: Toth N, Schick K (eds) The Oldowan: case studies into the earliest stone-age. Stone Age Institute, Bloomington, pp 155–222Google Scholar
  66. Valleron AJ (2005) Introduction à la Biostatistique. Masson, ParisGoogle Scholar
  67. Visalberghi E, Limongelli L (1994) Lack of comprehension of cause-effect relations in tool-using capuchin monkeys (Cebus apella). J Comp Psychol 108:15–22PubMedCrossRefGoogle Scholar
  68. Visalberghi E, Tomasello M (1998) Primate causal understanding in the physical and psychological domains. Behav Process 42:189–203CrossRefGoogle Scholar
  69. Warren W (1991) The perception-action coupling. In: Bloch H, Bertenthal BI (eds) Sensory-motor organizations and development in infancy and early childhood. Kluwer, Dordrecht, pp 23–37Google Scholar
  70. Whitesides GH (1985) Nut-cracking by wild chimpanzees in Sierra Leone, West Africa. Primates 26(1):91–94CrossRefGoogle Scholar
  71. Winter D (1979) Biomechanics and motor control of human movement. Wiley, HobokenGoogle Scholar
  72. Wynn T, McGrew WC (1989) An ape’s view of the Oldowan. Man 24:383–398CrossRefGoogle Scholar
  73. Yeadon MR, King MA (1999) A method for synchronising digitised video data. J Biomech 32:983–986PubMedCrossRefGoogle Scholar
  74. Zhang Z (1999) A flexible new technique for camera calibration. Technical Report MSR-TR-98-71. Microsoft Research, Microsoft Corporation, One Microsoft Way Redmond, WA 98052–6399, USAGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Blandine Bril
    • 1
    Email author
  • Gilles Dietrich
    • 2
  • Julie Foucart
    • 1
  • Koki Fuwa
    • 3
  • Satoshi Hirata
    • 3
  1. 1.Ecole des Hautes Etudes en Sciences Sociales, Groupe de recherche “Apprentissage et Contexte”ParisFrance
  2. 2.Ergonomie Comportement et Interaction, Équipe LAMAUniversité Paris DescartesParisFrance
  3. 3.Hayashibara Great Ape Research InstituteOkayamaJapan

Personalised recommendations