Animal Cognition

, Volume 10, Issue 4, pp 449–459

Octopuses (Octopus bimaculoides) and cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate

  • Lauren M. Hvorecny
  • Jessica L. Grudowski
  • Carrie J. Blakeslee
  • Tiffany L. Simmons
  • Paula R. Roy
  • Jennifer A. Brooks
  • Rachel M. Hanner
  • Marie E. Beigel
  • Miranda A. Karson
  • Rachel H. Nichols
  • Johanna B. Holm
  • Jean Geary Boal
Original Paper

Abstract

In complex navigation using landmarks, an animal must discriminate between potential cues and show context (condition) sensitivity. Such conditional discrimination is considered a form of complex learning and has been associated primarily with vertebrates. We tested the hypothesis that octopuses and cuttlefish are capable of conditional discrimination. Subjects were trained in two maze configurations (the conditions) in which they were required to select one of two particular escape routes within each maze (the discrimination). Conditional discrimination could be demonstrated by selecting the correct escape route in each maze. Six of ten mud-flat octopuses (Octopus bimaculoides), 6 of 13 pharaoh cuttlefish (Sepia pharaonis), and one of four common cuttlefish (S. officinalis) demonstrated conditional discrimination by successfully solving both mazes. These experiments demonstrate that cephalopods are capable of conditional discrimination and extend the limits of invertebrate complex learning.

Keywords

Cognition Mollusk Spatial learning Conditional discrimination Concurrent discrimination 

References

  1. Adamo SA, Ehgoetz K, Sangster C, Whitehorne I (2006) Signaling to the enemy? Body pattern expression and its response to external cues during hunting in the cuttlefish Sepia officinalis (Cephalopoda). Bio Bull 210:192–200Google Scholar
  2. Alves C, Modéran J, Chichery R, Dickel L (2006) Plasticity of spatial learning strategies in the common cuttlefish. Cognit Process 7(5):111CrossRefGoogle Scholar
  3. Alves C, Chichery R, Boal JG, Dickel L (2007) Orientation in the cuttlefish Sepia officinalis: response versus place learning. Anim Cogn 10(1):29–36PubMedCrossRefGoogle Scholar
  4. Balsam PD, Tomie A (1985) Context and learning. Erlbaum, HillsdaleGoogle Scholar
  5. Boal JG (1993) An assessment of complex learning in octopuses. Doctoral dissertation. The University of North Carolina, Chapel Hill, NC, USAGoogle Scholar
  6. Boal JG (1996) A review of simultaneous visual discrimination as a method of training octopuses. Biol Rev 71:157–190PubMedGoogle Scholar
  7. Boal JG, Hanlon RT, Dunham AW, Williams KT (2000) Experimental evidence for spatial learning in octopuses (Octopus bimaculoides). J Comp Psychol 114:246–252PubMedCrossRefGoogle Scholar
  8. Boletzky Sv (1972) A note on aerial prey-capture by Sepia officinalis (Mollusca, Cephalopoda). Vie Milieu 23:133–140Google Scholar
  9. Boletzky Sv (1983) Sepia officinalis. In: Boyle PR (ed) Cephalopod life cycles. Species accounts, vol 1. Academic, London, pp 31–52Google Scholar
  10. Brown MF, McKeon D, Curley T, Weston B, Lambert C, Lebowitz B (1998) Working memory for color in honeybees. Anim Learn Behav 26:264–271Google Scholar
  11. Budelmann BU (1994) Cephalopod sense organs, nerves and the brain: adaptations for high performance and life style. Mar Behav Physiol 25:13–24CrossRefGoogle Scholar
  12. Calvé MR (2005) Individual differences in the common cuttlefish Sepia officinalis. Master’s thesis, Department of Biology. Dalhousie University, Halifax, NSGoogle Scholar
  13. Colwill RM, Absher RA, Roberts ML (1988) Conditional Discrimination learning in Aplysia californica. J Neurosci 12:4440–4444Google Scholar
  14. Corner BD, Moore HT (1980) Field observations on the reproductive behavior of Sepia latimanus. Micronesica 16:235–260Google Scholar
  15. Couvillon PA, Bitterman ME (1988) Compound–component and conditional discrimination of colors and odors by honey bees: further tests of a continuity model. Anim Learn Behav 16:67–74Google Scholar
  16. Darmaillacq AS, Dickel L, Chichery M-P, Agin V, Chichery R (2004a) Rapid taste aversion learning in adult cuttlefish, Sepia officinalis. Anim Behav 68:1291–1298CrossRefGoogle Scholar
  17. Darmaillacq AS, Chichery R, Poirier R, Dickel L (2004b) Effect of early feeding experience on subsequent prey preference by cuttlefish, Sepia officinalis. Develop Psychobiol 45:239–244CrossRefGoogle Scholar
  18. Ehrenberg CG (1831) Symbolae physicae, Evertebrata, I: Mollusca. Berolini, [Latin]Google Scholar
  19. Fellows BJ (1967) Chance stimulus sequences for discrimination tasks. Psychol Bull 67:87–92PubMedCrossRefGoogle Scholar
  20. Forsythe JW, Hanlon RT (1988) Behavior, body patterning and reproductive biology of Octopus bimaculoides from California. Malacologia 29:41–55Google Scholar
  21. Forsythe JW, Hanlon RT (1997) Foraging and associated behavior by Octopus cyanea Gray, 1849 on a coral atoll, French Polynesia. J Exp Mar Biol Ecol 209:15–31CrossRefGoogle Scholar
  22. Gabr HR, Hanlon RT, Hanafy MH, El-Etreby SG (1998) Maturation, seasonality and reproduction of two commercially valuable cuttlefish, Sepia pharaonis and S. dollfusi, in the Suez Canal. Fish Res 36:99–115CrossRefGoogle Scholar
  23. Gagne RM (1970) The conditions of learning. Holt, Rinehart & Winston, New YorkGoogle Scholar
  24. Golledge RG (1999) Wayfinding behavior. Johns Hopkins Univ Press, BaltimoreGoogle Scholar
  25. Hall KC, Hanlon RT (2002) Principal features of the mating system of a large spawning aggregation of the giant Australian cuttlefish Sepia apama (Mollusca: Cephalopoda). Mar Biol 140:533–545CrossRefGoogle Scholar
  26. Hanley JS, Shashar N, Smolowitz R, Mebane W, Hanlon RT (1999) Soft-sided tanks improve long-term health of cultured cuttlefish. Biol Bull 197:237–238CrossRefGoogle Scholar
  27. Hanlon RT, Messenger JB (1996) Cephalopod behaviour. Cambridge Univ Press, CambridgeGoogle Scholar
  28. Harlow H (1949) The formation of learning sets. Psychol Rev 56:51–65CrossRefPubMedGoogle Scholar
  29. Healy S (1998) Spatial representation in animals. Oxford Univ Press, New YorkGoogle Scholar
  30. Hochberg FG, Fields WG (1980) Cephalopoda: the squids and octopuses. In: Morris RH, Abbott DP, Haderlie EC (eds) Intertidal invertebrates of California. Stanford University Press, Stanford, CA, pp 429–444Google Scholar
  31. Karson MA (2003) Simultaneous discrimination learning and its neural correlates in the cuttlefish Sepia officinalis (Cephalopoda: Mollusca). Doctoral Dissertation, Department of Zoology. Michigan State University, East Lansing, MIGoogle Scholar
  32. Karson MA, Boal JG, Hanlon RT (2003) Experimental evidence for spatial learning in cuttlefish (Sepia officinalis). J Comp Psychol 117:149–155PubMedCrossRefGoogle Scholar
  33. King AJ, Adamo SA (2006) The ventilatory, cardiac and behavioural responses of resting cuttlefish (Sepia officinalis L.) to sudden visual stimuli. J Exp Biol 209:1101–1111PubMedCrossRefGoogle Scholar
  34. Linnæus C (1758) Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Holmiae. Syst Nat ed 10:658Google Scholar
  35. Mackay HA (1991) Conditional stimulus control. In: Iverson IH, Lattal KA (eds) Experimental analysis of behavior, part 1. Elsevier, Amsterdam, pp 301–350Google Scholar
  36. Mackintosh NJ, Mackintosh J (1964) Performance of Octopus over a series of reversals of a simultaneous discrimination. Anim Behav 12:321-324CrossRefGoogle Scholar
  37. Mather JA (1991) Navigation by spatial memory and use of visual landmarks in octopuses. J Comp Physiol A 168:491–497CrossRefGoogle Scholar
  38. Mather JA (1995) Cognition in cephalopods. Adv Study Behav 24:317–353Google Scholar
  39. Mather JA, Anderson RC (1993). “Personalities” of octopuses (Octopus rubescens). J Comp Psychol 107:336–340CrossRefGoogle Scholar
  40. Messenger JB (1977) Prey-capture and learning in the cuttlefish, Sepia. Symp Zool Soc Lond 38:347-376Google Scholar
  41. Minton JW, Walsh LS, Lee PG, Forsythe JW (2001) First multi-generation culture of the tropical cuttlefish Sepia pharaonis Ehrenberg, 1831. Aquaculture Int 9:375–392CrossRefGoogle Scholar
  42. Naud M-J, Hanlon RT, Hall KC, Shaw PW, Havenhand JN (2004) Behavioral and genetic assessment of mating success in a natural spawning aggregation of the giant cuttlefish (Sepia apama) in southern Australia. Anim Behav 67:1043–1050CrossRefGoogle Scholar
  43. Pickford GE, MacConnaughey BH (1949) The Octopus bimaculatus problem: a study in sibling species. Bull Bingham Oceanogr Coll 12:1–66Google Scholar
  44. Sanders GD (1975) The Cephalopods. In: Corning WC, Dyal JA, Willows AOD (eds) Invertebrate learning. Cephalopods and Echinoderms, vol 3. Plenum Press, New York, pp 1–101Google Scholar
  45. Schiller PH (1949) Delayed detour response in the octopus. J Comp Physiol Psychol 42:220-225CrossRefPubMedGoogle Scholar
  46. Shashar N, Rutledge PS, Cronin TW (1996) Polarization vision in cuttlefish—a concealed communication channel? J Exp Biol 199:2077–2084PubMedGoogle Scholar
  47. Shettleworth SJ (1998) Cognition, evolution, and behavior. Oxford Univ Press, New YorkGoogle Scholar
  48. Sinn DL, Moltschaniwskyj NA (2005) Personality traits in the dumpling squid (Euprymna tasmanica): context-specific traits and their correlation with biological characteristics. J Comp Psychol 119:99–110PubMedCrossRefGoogle Scholar
  49. Sinn D, Perrin N, Mather JA, Anderson RC (2001) Early temperamental traits in an octopus. J Comp Psychol 115:351–364PubMedCrossRefGoogle Scholar
  50. Thomas RK (1980) Evolution of intelligence: an approach to its assessment. Brain Behav Evol 17:454–472PubMedGoogle Scholar
  51. Thomas RK (1996) Investigating cognitive abilities in animals: unrealized potential. Cognit Brain Res 3:157–166CrossRefGoogle Scholar
  52. Verrill AE (1883) Descriptions of two species of octopus from California. Bull Mus Comp Zool Harv 11:117–124Google Scholar
  53. Walker JJ, Longo N, Bitterman ME (1970) The octopus in the laboratory. Handling, maintenance, and training. Behav Res Meth Instr 2:15-18Google Scholar
  54. Watanuki NA, Iwashita TO, Kawamura GU (2000) Cuttlefish spawning and visually mediated entry into basket traps. Fish Sci 66(2):185–189CrossRefGoogle Scholar
  55. Wells MJ (1964) Detour experiments with octopuses. J Exp Biol 41:621–642Google Scholar
  56. Wells MJ (1967) Short-term learning and interocular transfer in detour experiments with octopuses. J Exp Biol 47:383–408Google Scholar
  57. Wells MJ (1970) Detour experiments with split-brain octopuses. J Exp Biol 53:375–389Google Scholar
  58. Wells MJ (1978) Octopus: physiology and behaviour of an advanced invertebrate. Wiley, New YorkGoogle Scholar
  59. Young JZ (1962) Repeated reversal of training in Octopus. Q J Exp Psychol 14:206–222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Lauren M. Hvorecny
    • 1
  • Jessica L. Grudowski
    • 1
  • Carrie J. Blakeslee
    • 1
  • Tiffany L. Simmons
    • 1
  • Paula R. Roy
    • 2
  • Jennifer A. Brooks
    • 1
  • Rachel M. Hanner
    • 1
  • Marie E. Beigel
    • 1
  • Miranda A. Karson
    • 3
  • Rachel H. Nichols
    • 1
  • Johanna B. Holm
    • 1
  • Jean Geary Boal
    • 1
  1. 1.Department of BiologyMillersville UniversityMillersvilleUSA
  2. 2.Department of PsychologyMillersville UniversityMillersvilleUSA
  3. 3.University of Maryland School of MedicineBaltimoreUSA

Personalised recommendations