Visual Geosciences

, Volume 9, Issue 1, pp 29–38 | Cite as

Remote data analysis, visualization and problem solving environment (PSE) based on wavelets in the geosciences

  • David A. Yuen
  • Zachary A. Garbow
  • Gordon Erlebacher
Original Article

Abstract

We discuss here the issues faced by earth scientists in analyzing and visualizing large datasets over a GRID-like setup from a client-server perspective. We approach this problem by using a remote, web-based visualization and data analysis framework, called WEB-IS, and by employing second-generation wavelets as a means for reducing the amount of data transferred and for extracting coherent features in complex geophysical flows and surface faulting patterns. As an example, we describe how onboard processors on satellites can function as a server for beaming down extracted information to the client computer on the ground, thus exemplifying WEB-IS as a viable middleware on a GRID network for geosciences.

Keywords

Data analysis Internet Visualization Wavelet Wireless 

Notes

Acknowledgements

The authors thank Professor Geoffrey C. Fox for opening our eyes to the GRID concept. We also benefited greatly from discussions with Oleg V. Vasilyev, J.M. Boggs, Fabien W. Dubuffet, Alain P. Vincent, N.R. Olson, Erik O.D. Sevre, Witold Dzwinel and Yoshi J.B.D. Kaneko. This research has been supported by the Geophysics and Advanced Computational Research, and Advanced Computer and Infrastructure and Research programs of the National Science Foundation and the Basic Energy Sciences program of the Dept. of Energy.

References

  1. Barth TJ, Chan T, Haimes R (eds) (2002) Multiscale and multiresolution: theory and applications. Springer, Berlin Heidelberg New York, 389 ppGoogle Scholar
  2. Bergeron SY, Vincent AP, Yuen DA, Tranchant BJS, Tchong C (1999) Viewing seismic velocity anomalies with 3-D continuous Gaussian wavelets. Geophys Res Lett 26(15):2311–2314CrossRefGoogle Scholar
  3. Chen L, Fujishiro I, Nakajima K (2003) Parallel visualization for unstructured geoscientific data. Pure Appl Geophys (in press)Google Scholar
  4. Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Comm Pure Appl Math 41:909–996Google Scholar
  5. Dzwinel W, Yuen DA, Kaneko Y, Boryczko K, Ben-Zion Y (2003) Multi-resolution clustering analysis and 3-D visualization of multitudinous synthetic earthquakes. Visual Geosciences 8, DOI 10.1007/s10069-002-0006-2Google Scholar
  6. Erlebacher G, Yuen DA (2002a) A wavelet toolkit for visualization and analysis of large datasets in earthquake research. Pure Appl Geophys (in press, 2004)Google Scholar
  7. Erlebacher G, Yuen DA (2002b) Web-based visualization services for the geosciences. Eos Trans, AGU 83(47), Abstract NG61A-05, San Francisco, CaliforniaGoogle Scholar
  8. Fox GC (2003) Grid computing environments. Comput Sci Eng, High-Dimensional Data 5:2Google Scholar
  9. Fox GC et al (2002) Grid services for earthquake sciences. In: Concurr Comp Pract E 14/6–7:371–393Google Scholar
  10. Garbow ZA, Olson NR, Yuen DA, Boggs JM (2001) Interactive web-based map: applications to large data sets in the geosciences. Electronic Geosciences 6, DOI 10.1007/s10069-001-1018-zGoogle Scholar
  11. Garbow ZA, Erlebacher G, Yuen DA, Sevre EO, Nagle AR, Kaneko Y (2002) Web-based interrogation of large scale geophysical datasets and clustering analysis of many earthquake events from desktop and handheld computers. Eos Trans, AGU 83(47), Abstract NG12A-1019, San Francisco, CaliforniaGoogle Scholar
  12. Garbow ZA, Erlebacher G, Yuen DA, Boggs JM, Dubuffet F (2003) Web-based interrogation of large-scale geophysical datasets from handheld devices. Visual Geosciences 8, DOI 10.1007/s10069-003-0007-9Google Scholar
  13. Grossman RL, Kamath C, Kegelmeyer P, Kumar V, Namburu RR, (eds) (2001) Data mining for scientific and engineering applications. Kluwer, Dordrecht, 601 ppGoogle Scholar
  14. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning : data mining, inference and prediction. Springer, Berlin Heidelberg New York, 533 ppGoogle Scholar
  15. Hinneburg A, Keim D, Wawryniuk M (2003) Using projections to visually cluster high-dimensional data, computing in science and engineering. Comput Sci Eng, High-Dimensional Data 5:2Google Scholar
  16. Horbelt S, Unser M, Vetterli M (1999) Wavelet projections for volume rendering. In: Alberti MA, Gallo G, Jelinek I (eds) Proc Conf Eurographics ‘99, 1999, Milan, Italy, 428 ppGoogle Scholar
  17. Kadlec BJ, Yang XL, Wang Y, Bollig EF, Garbow ZA, Yuen DA, Erlebacher G (2003) WEB-IS (Integrated System): an overall view. Eos Trans, AGU 84(46), Abstract NG11A-0163, San Francisco, CaliforniaGoogle Scholar
  18. Kaneko Y, Yuen DA, Dzwinel W, Boryszko K, Ben-Zion Y, Sevre EO (2002) Multi-resolution clustering analysis and visualization of around one million synthetic earthquake events. Eos Trans, AGU 83(47), Abstract NG12A-1020, San Francisco, CaliforniaGoogle Scholar
  19. Kumar R, Foufoula-Georgiou E (1997) Wavelet analysis for geophysical applications. Rev Geophys 35:385–412Google Scholar
  20. Mallat S (1998) A wavelet tour of signal processing. Academic Press, New York, 478 ppGoogle Scholar
  21. Matsui H, Chen L, Fujishiro I, Okuda H (2002) Visualization strategy on the Earth simulator for large-scale unstructured data sets of GeoFEM. Eos Trans, AGU 83(47), Abstract NG61A-02, San Francisco, CaliforniaGoogle Scholar
  22. Piromallo C, Vincent AP, Yuen DA, Morelli A (2001) Dynamics of the transition zone under Europe inferred from wavelet cross spectra of seismic tomography. Phys Earth Planet In 125:125–39CrossRefGoogle Scholar
  23. Stegmaier S, Magallon M, Ertl T (2002) A generic solution for hardware-accelerated remote visualization. EUROGRAPHICS, IEEE TCVG Symposium on VisualizationGoogle Scholar
  24. Sweldens W (1998) The lifting scheme: a construction of second generation wavelets. SIAM J Math Anal 29(2):511–546CrossRefGoogle Scholar
  25. Vasilyev OV, Paolucci S (1996) A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain. J Comp Phys 125:498–512CrossRefGoogle Scholar
  26. Vasilyev OV, Podladchikov YY, Yuen DA (1998) Modeling of compaction driven flow in poro-viscoelastic medium using adaptive wavelet collocation method. Geophys Res Lett 25(17):3239–3243CrossRefGoogle Scholar
  27. Vecsey L, Hier Majumder C, Yuen DA (2003) Multi-resolution tectonic features over the Earth inferred from the wavelet transformed geoid. Visual Geosciences 8, DOI 10.1007/s10069-003-0008-8Google Scholar
  28. Wang Y, Erlebacher G, Garbow ZA, Yuen DA (2003) Web-based service of a visualization package Amira for the geosciences. Visual Geosciences (submitted)Google Scholar
  29. Yang R, Kafatos M, Doty B, Kinter III JL, Pham L (2003) A distributed enhanced server for multidimensional scientific data. Comput Sci Eng, High-Dimensional Data 5(2)Google Scholar
  30. Yang XL, Wang Y, Bollig EJ, Kadlec BJ, Garbow ZA, Yuen DA, Erlebacher G (2003) WEB-IS2: next generation web services using Amira visualization package. Eos Trans, AGU 84(46), Abstract NG11A-0164, San Francisco, CaliforniaGoogle Scholar
  31. Yuen DA, Vincent AP, Bergeron SY, Dubuffet F, Ten AA, Steinbach VC, Starin L (2000) Crossing of scales and nonlinearities in geophysical processes. In: Boschi E, Ekstrom G, Morelli A (eds) Problems in geophysics for the new millennium. Editrice Compositori, Bologna, Italy, pp 403–463Google Scholar
  32. Yuen DA, Vincent AP, Kido MJB, Vecsey L (2002) Geophysical applications of multidimensional filtering with wavelets. Pure Appl Geophys 159(10):2285–2309CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • David A. Yuen
    • 1
  • Zachary A. Garbow
    • 1
    • 3
  • Gordon Erlebacher
    • 2
  1. 1.Dept. of Geology and Geophysics and Minnesota Supercomputing InstituteUniversity of MinnesotaMinneapolisUSA
  2. 2.School of Computational Sciences and Information TechnologyFlorida State UniversityTallahasseeUSA
  3. 3.499 Walter LibraryMinneapolisUSA

Personalised recommendations