Advertisement

Food Science and Biotechnology

, Volume 28, Issue 6, pp 1801–1809 | Cite as

Combination of mineral trioxide aggregate and propolis promotes odontoblastic differentiation of human dental pulp stem cells through ERK signaling pathway

  • Jae-Hwan Kim
  • Soo-Yung Kim
  • Su-Mi Woo
  • Ha-Na Jeong
  • Ji-Yeon Jung
  • Seon-Mi Kim
  • Hae-Soon LimEmail author
Article
  • 74 Downloads

Abstract

The aim of this study is to investigate combined effects of mineral trioxide aggregate (MTA) and propolis on odontoblastic differentiation of human dental pulp stem cells (DPSCs) and to find a signaling pathway involved. Combination of MTA and propolis significantly up-regulated the expression of DSPP and DMP1, and facilitated a mineral nodule formation (p < 0.05). Treatments with MTA, propolis or combined increased the phosphorylation of extracellular signal-regulated kinases (ERK), one of mitogen-activated protein kinases signaling cascades during odontogenic differentiation of DPSCs (p < 0.05), and U0126, an inhibitor of ERK, decreased calcium deposits (p < 0.05). Combination of MTA and propolis promotes odontogenic differentiation and mineralization of DPSCs through ERK pathway.

Keywords

ERK signaling Human dental pulp cells Mineral trioxide aggregate Odontoblastic differentiation Propolis 

Notes

Acknowledgements

This research was supported by a Grant (HCRI 16919-1) from Chonnam National University Hwasun Hospital Institute for Biomedical Science.

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest related to this study.

References

  1. Ahangari Z, Naseri M, Jalili M, Mansouri Y, Mashhadiabbas F, Torkaman A. Effect of propolis on dentin regeneration and the potential role of dental pulp stem cell in Guinea pigs. Cell J. 13: 223–228 (2012)PubMedGoogle Scholar
  2. Ahangari Z, Naseri M, Vatandoost F. Propolis: chemical composition and its applications in endodontics. Iran Endod. J. 13: 285–292 (2018)PubMedPubMedCentralGoogle Scholar
  3. Ang ES, Pavlos NJ, Chai LY, Qi M, Cheng TS, Steer JH, Joyce DA, Zheng MH, Xu I. Caffeic acid phenethyl ester, an active component of honeybee propolis attenuates osteoclastogenesis and bone resorption via the suppression of RANKL-induced NF-kappaB and NFAT activity. J. Cell Physiol. 221: 642–649 (2009)PubMedGoogle Scholar
  4. Bretz WA, Chiego DJ Jr, Marcucci MC, Cunha I, Custódio A, Schneider LG. Preliminary report on the effects of propolis on wound healing in the dental pulp. Z. Naturforsch. C. 53: 1045–1048 (1998)PubMedGoogle Scholar
  5. Carrotte P. Endodontics: Part 9. Calcium hydroxide, root resorption, endo-perio lesions. Br. Dent. J. 197: 735–743 (2004)PubMedGoogle Scholar
  6. Feng JQ, Huang H, Lu Y, Ye L, Xie Y, Tsutsui TW, Kunieda T, Castranio T, Scott G, Bonesald LB, Mishina Y. The Dentin matrix protein 1 (Dmp1) is specifically expressed in mineralized, but not soft, tissues during development. J. Dent. Res. 82: 776–780 (2003)PubMedGoogle Scholar
  7. Ge C, Xiao G, Jiang D, Franceschi RT. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 176: 709–718 (2007)PubMedPubMedCentralGoogle Scholar
  8. George A, Silberstein R, Veis A. In situ hybridization shows Dmp1 (AG1) to be a developmentally regulated dentin-specific protein produced by mature odontoblasts. Connect. Tissue Res. 33: 67–72 (1995)PubMedGoogle Scholar
  9. Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J. Clin. Invest. 120(7): 2457–2473 (2010)PubMedPubMedCentralGoogle Scholar
  10. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J. Dent. Res. 81: 531–535 (2002)PubMedGoogle Scholar
  11. Hakki SS, Bozkurt SB, Hakki EE, Belli S. Effects of mineral trioxide aggregate on cell survival, gene expression associated with mineralized tissues, and biomineralization of cementoblasts. J. Endod. 35(4): 513–519 (2009)PubMedGoogle Scholar
  12. Hilkens P, Gervois P, Fanton Y, Vanomelingen J, Marten W, Struys T, Politis C, Lambrichts I, Bronckaers A. Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res. 353: 65–78 (2013)PubMedGoogle Scholar
  13. Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J. Dent. Res. 88: 792–806 (2009)PubMedPubMedCentralGoogle Scholar
  14. Hwang YC, Hwang IN, Oh WM, Park JC, Lee DS, Son HH. Influence of TGF-beta1 on the expression of BSP, DSP, TGF-beta1 receptor I and Smad proteins during reparative dentinogenesis. J. Mol. Histol. 39: 153–160 (2008)PubMedGoogle Scholar
  15. Jacob A, Zhang Y, George A. Transcriptional regulation of dentin matrix protein 1 (DMP1) in odontoblasts and osteoblasts. Connect. Tissue Res. 55: 107–112 (2014)PubMedGoogle Scholar
  16. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 298: 1911–1912 (2002)PubMedGoogle Scholar
  17. Liu CH, Hung CJ, Huang TH, Lin CC, Kao CT, Shie MY. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway. Mater. Sci. Eng. C. Mater. Biol. Appl. 43: 359–366 (2014)PubMedGoogle Scholar
  18. Lv T, Wu Y, Mu C, Liu G, Yan M, Xu X, Wu H, Du J, Yu J, Mu J. Insulin-like growth factor 1 promotes the proliferation and committed differentiation of human dental pulp stem cells through MAPK pathways. Arch. Oral Biol. 72: 116–123 (2016)PubMedGoogle Scholar
  19. Marcucci MC. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie. 26: 83–99 (1995)Google Scholar
  20. Middleton E Jr. Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol. 439: 175–182 (1998)PubMedGoogle Scholar
  21. Moreau JL, Xu HH. Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate-chitosan composite scaffold. Biomaterials. 30: 2675–2682 (2009)PubMedPubMedCentralGoogle Scholar
  22. Naik RM, Pudakalkatti PS, Hattarki SA. Can MTA be: Miracle trioxide aggregate? J. Indian Soc. Periodontol. 18: 5–8 (2014)PubMedPubMedCentralGoogle Scholar
  23. Narayanan K, Ramachandran A, Hao J, He G, Park KW, Cho M, George A. Dual functional roles of dentin matrix protein 1. Implications in biomineralization and gene transcription by activation of intracellular Ca2+ store. J. Biol. Chem. 278: 17500–17508 (2003)PubMedGoogle Scholar
  24. Narayanan K, Gajjeraman S, Ramachandran A, Hao J, George A. Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. J. Biol. Chem. 281: 19064–19071 (2006)PubMedGoogle Scholar
  25. Nieva Moreno MI, Isla MI, Cudmani NG, Vattuone MA, Sampietro AR. Screening of antibacterial activity of Amaicha del Valle (Tucumán, Argentina) propolis. J. Ethnopharmacol. 68: 97–102 (1999)PubMedGoogle Scholar
  26. Hwu YJ, Lin FY. Effectiveness of propolis on oral health: a meta-analysis. J. Nurs. Res. 22: 221–229 (2014)PubMedGoogle Scholar
  27. Osés SM, Pascual-Maté A, Fernández-Muiño MA, López-Diaz TM, Sancho MT. Bioactive properties of honey with propolis. Food Chemistry. 196: 1215–1223 (2016)PubMedGoogle Scholar
  28. Parolia A, Kundabala M, Rao NN, Acharya SR, Aqrawal P, Mohan M, Thomas M. A comparative histological analysis of human pulp following direct pulp capping with Propolis, mineral trioxide aggregate and Dycal. Aust. Dent. J. 55: 59–64 (2010)PubMedGoogle Scholar
  29. Pileggi R, Antony K, Johnson K, Zuo J, Shannon Holliday L. Propolis inhibits osteoclast maturation. Dent. Traumatol. 25: 584–588 (2009)PubMedGoogle Scholar
  30. Qureshi A, Soujanya E, Nandakumar, Pratapkumar, and Sambashivarao. Recent advances in pulp capping materials: an overview. J. Clin. Diagn. Res. 8(1): 316–321 (2014)PubMedPubMedCentralGoogle Scholar
  31. Raoof M, Yaghoobi MM, Derakhshani A, Kamal-Abadi AM, Ebrahimi B, Abbasnejad M, Shokouhinejad N. A modified efficient method for dental pulp stem cell isolation. Dent. Res. J. (Isfahan). 11: 244–250 (2014)Google Scholar
  32. Sabir A, Tabbu CR, Aqustiono P, Sosroseno W. Histological analysis of rat dental pulp tissue capped with propolis. J. Oral Sci. 47: 135–138 (2005)PubMedGoogle Scholar
  33. Scheller S, Ilewicz L, Luciak M, Skrobidurska D, Stojko A, Matuga W. Biological properties and clinical application of propolis. IX. Experimental observation on the influence of ethanol extract of propolis (EEP) on dental pulp regeneration. Arzneimittel-Forschung. 28(2): 289–291 (1978)PubMedGoogle Scholar
  34. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum. Reprod. 22: 2903–2911 (2007)PubMedGoogle Scholar
  35. Toker H, Ozan F, Ozer H, Ozdemir H, Eren K, Yeler H. A morphometric and histopathologic evaluation of the effects of propolis on alveolar bone loss in experimental periodontitis in rats. J. Periodontol. 79(6): 1089–1094 (2008)PubMedGoogle Scholar
  36. Utneja S, Nawal RR, Talwar S, Verma M. Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement—review of its composition, properties and applications. Restor. Dent. Endod. 40(1): 1–13 (2015)PubMedGoogle Scholar
  37. Woo SM, Seong KJ, Oh SJ, Park HJ, Kim SH, Kim WJ, Jung JY. 17beta-estradiol induces odontoblastic differentiation via activation of the c-Src/MAPK pathway in human dental pulp cells. Biochem. Cell Biol. 93(6): 587–595 (2015a)PubMedGoogle Scholar
  38. Woo SM, Lim HS, Jeong KY, Kim SM, Kim WJ, Jung JY. Vitamin D promotes odontogenic differentiation of human dental pulp cells via ERK activation. Mol. Cells. 38: 604–609 (2015b)PubMedPubMedCentralGoogle Scholar
  39. Wu Y, Zhang X, Zhang P, Fang B, Jiang L. Intermittent traction stretch promotes the osteoblastic differentiation of bone mesenchymal stem cells by the ERK1/2-activated Cbfa1 pathway. Connect. Tissue Res. 53(6): 451–459 (2012)PubMedGoogle Scholar
  40. Yamamura T. Differentiation of pulpal cells and inductive influences of various matrices with reference to pulpal wound healing. J. Dent. Res. 64: 530–540 (1985)PubMedGoogle Scholar
  41. Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signaling cascades and transcriptional regulation. Gene. 513: 1–13 (2013)PubMedGoogle Scholar
  42. Zhao X, He W, Song Z, Tong Z, Li S, Ni L. Mineral trioxide aggregate promotes odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp stem cells. Mol. Biol. Rep. 39: 215–220 (2012)PubMedGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Pediatric Dentistry, School of Dentistry, Dental Science Research InstituteChonnam National UniversityGwangjuRepublic of Korea
  2. 2.Department of Oral Physiology, School of Dentistry, Dental Science Research InstituteChonnam National UniversityGwangjuRepublic of Korea
  3. 3.Department of DentistryChonnam National University Hwasun HospitalHwasun-gunRepublic of Korea
  4. 4.Department of Dental Education, School of Dentistry, Dental Science Research InstituteChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations