Advertisement

Enzyme-assisted extraction of astaxanthin from Haematococcus pluvialis and its stability and antioxidant activity

  • Xiaoyan ZhaoEmail author
  • Xiaowei Zhang
  • Hongkai Liu
  • Haitao Zhu
  • Yunping Zhu
Article
  • 13 Downloads

Abstract

The release of bioactive pigments could be potentially improved by enzyme degradation of plant cell wall polysaccharides. In this study, the objective was to evaluate enzyme type (cellulase and pectinase), pH values, hydrolysis temperature and time on the release of astaxanthin from Haematococcus pluvialis (H. pluvialis). The results showed that pre-treated H. pluvialis with enzymes could improve the separation yield of astaxanthin. Pectinase release rate of astaxanthin from H. pluvialis was significantly higher than cellulase (p < 0.05), and enzyme hydrolysis time was also shorter. The stability study of astaxanthin oleoresin and microcapsule during storage at different temperature, oxygen and illumination was found that the degradation rate of astaxanthin rose with increasing temperature and illumination time, and the retention in oxygen environment decreased. The stability of astaxanthin microcapsules was better than astaxanthin oleoresin.

Keywords

H. pluvialis Astaxanthin Enzyme assisted extraction Stability and antioxidant activity 

Notes

Acknowledgements

Financial support of this work by National Natural Science Foundation of China (No. 21406133).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Ahmed F, Li Y, Fanning K, Netzel M, Schenk P. Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis. Food Res. Int. 74: 231–236 (2015).CrossRefGoogle Scholar
  2. Azabou S, Abid Y, Sebii H, Felfoul I, Gargouri A, Attia H. Potential of the solid-state fermentation of tomato by products by Fusarium solani pisi for enzymatic extraction of lycopene. LWT Food Sci. Technol. 68: 280–287 (2016).CrossRefGoogle Scholar
  3. Bustamante A, Masson L, Velasco J, del Valle JM, Robert P. Microencapsulation of H. pluvialis oleoresins with different fatty acid composition: kinetic stability of astaxanthin and alpha-tocopherol. Food Chem. 190: 1013–1021(2016).CrossRefGoogle Scholar
  4. Bustos-Garza C, Yáñez-Fernández J, Barragán-Huerta BE. Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin from Haematococcus pluvialis using several encapsulation wall materials. Food Res. Int. 54(1): 641–649 (2013).CrossRefGoogle Scholar
  5. Burin VM, Rossa PN, Ferreira-Lima NE, Hillmann MCR, Boirdignon-Luiz MT. Anthocyanins: optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft drink. Int. J. Food Sci. Technol. 46(1): 186–193 (2011).CrossRefGoogle Scholar
  6. Christophersen AG, Jun H, Jorgensen K, Skibsted LH. Photobleaching of astaxanthin and canthaxanthin. Z. Lebensm Unters Forsch 192: 433–439 (1991).CrossRefGoogle Scholar
  7. Herrera-Andrade MH, Sánchez-Machado DI, López-Cervantes J, Núñez-Gastélum JA, Moreno-Ramos OH. Extracción de la astaxantina y suestabilidad. Revista Latinoamericana de Recursos Naturales 7(1): 21–27 (2011).Google Scholar
  8. Ge XT, Wan ZJ, Song N, Fan AP, Wu RS. Efficient methods for the extraction and microencapsulation of red pigments from a hybrid rose. J. Food Eng. 94: 122–128 (2009).CrossRefGoogle Scholar
  9. Gomez-Estaca J, Comunian TA, Montero P, Ferro-Furtado R, Favaro-Trindade CS. Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin-cashew gum complex. Food Hydrocolloid. 61: 155–162 (2016).CrossRefGoogle Scholar
  10. Kobayashi M, Kurimura Y, Sakamoto Y, Tsuji Y. Selective extraction of astaxanthin and chlorophyll from the green alga Haematococcus pluvialis. Biotechnol. Tech. 11: 657–660 (1997).CrossRefGoogle Scholar
  11. Otálora MC, Carriazo GJ, Iturriaga L, Nazareno MA, Osorio C. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem. 187: 174–181(2015).CrossRefGoogle Scholar
  12. Puri M, Sharma D, Barrow CJ. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 30: 37–44 (2012).CrossRefGoogle Scholar
  13. Rao AR, Phang SM, Ravi S, Ravishankar GA. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12(1): 128–152 (2014).CrossRefGoogle Scholar
  14. Ranveer RC, Patil SN, Sahoo AK. Effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food Bioprod. Process. 91(4): 370–375 (2013).CrossRefGoogle Scholar
  15. Rocha-Selmi GA, Favaro-Trindade CS, Grosso CRF. Morphology, stability, and application of lycopene microcapsules produced by complex coacervation. J. Chem. 5: 12025–12028 (2013).Google Scholar
  16. Rocha GA, Fávaro-Trindade CS, Grosso CRF. Microencapsulation of lycopene by spray drying: characterization, stability and application of microcapsules. Food Bioprod. Proce. 90: 37–42 (2012).CrossRefGoogle Scholar
  17. Rockenbach II, Gonzaga LV,  Rizelio VM, de Souza Schmidt Gonçalves AE, Genovese MI, Roseane Fett R. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int. 44(4): 897–901 (2011).CrossRefGoogle Scholar
  18. Ruen-ngam D, Shotipruk A, Pavasant P. Comparison of extraction methods for recovery of astaxanthin from Haematococcus pluvialis. Sep. Sci.Technol. 46: 64–70 (2011).CrossRefGoogle Scholar
  19. Sarada R, Vidhyathi R, Usha D, Ravishankar AG. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. J. Agric. Food Chem. 54: 7585–7588 (2006).CrossRefGoogle Scholar
  20. Takeungwongtrakul S, Benjakul S, Santoso J, Trilaksani W, Nurilmala M. Extraction and stability of carotenoid-containing lipids from hepatopancreas of Pacific white shrimp (Litopenaeus vannamei). J. Food Process. Preserv. 39(1): 10–18 (2015).CrossRefGoogle Scholar
  21. Thana P, Machmudah S, Goto M, Sasaki M, Pavasant P, Shotipruk A. Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis. Bioresour. Technol. 99: 3110–3115 (2008).CrossRefGoogle Scholar
  22. Vasco-Correa J, Zapata ADZ. Enzymatic extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) at laboratory and bench scale. LWT Food Sci. Technol. 80: 280–285(2017).CrossRefGoogle Scholar
  23. Wang LZ, Yang B, Yan B L, Yao XC. Supercritical fluid extraction of astaxanthin from Haematococcus pluvialis and its antioxidant potential in sunflower oil. Innov. Food Sci. Emerg. Technol. 13: 120–127(2012).CrossRefGoogle Scholar
  24. Xu CM, Yagiz Y, Borejsza-Wysocki W, Lu J, Gu LW, Ramírez-Rodrigue MM, Marshall MR. Enzyme release of phenolics from muscadine grape (Vitis rotundifolia Michx.) skins and seeds. Food Chem.157: 20–29 (2014).CrossRefGoogle Scholar
  25. Yin XL, You QH, Jiang ZH. Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology. Carbohydr. Polym. 86, 1358–1364 (2011).CrossRefGoogle Scholar
  26. Zhang M, Wang F, Liu R, Tang XL, Zhang Q, Zhang ZS. Effects of superfine grinding on physicochemical and antioxidant properties of Lycium barbarum polysaccharides. LWT - Food Sci. Technol. 58(2): 594–601 (2014).CrossRefGoogle Scholar
  27. Zhao XY, Zhang XW, Fu LD, Zhu HT, Zhang BW. Effect of extraction and drying methods on antioxidant activity of astaxanthin from Haematococcus pluvialis. Food Bioprod. Process. 99: 197–203 (2016).CrossRefGoogle Scholar
  28. Zhou JK, Li JH, Ke FH, Huang Y, Yan ZJ. New technology studies of enzyme method extracting astaxanthin from Haematococcus pluvialis. J. Chin. Med. Mater. 31(9): 1423–1425 (2008).Google Scholar
  29. Zhou SK, Bia TN, Xu YF, Zhang RL, Yang MJ. Extraction optimization of carbohydrate compound from Huangqi using orthogonal design. Int. J. Biolog. Macromol. 58: 13–17(2013).CrossRefGoogle Scholar
  30. Zuorro A, Fidaleo M, Lavecchia R. Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme Microb. Technol. 49: 567–573 (2011).CrossRefGoogle Scholar
  31. Zuorro A, Maffei G, Lavecchia R. Optimization of enzyme-assisted lipid extraction from Nannochloropsis microalgae. J. Taiwan Ins. Chem. Eng. 67: 106–114 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology 2019

Authors and Affiliations

  • Xiaoyan Zhao
    • 1
    Email author
  • Xiaowei Zhang
    • 1
  • Hongkai Liu
    • 1
  • Haitao Zhu
    • 1
  • Yunping Zhu
    • 2
  1. 1.Department of Food Science and Nutrition, Culinary InstituteUniversity of JinanJinanChina
  2. 2.Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business University (BTBU)BeijingChina

Personalised recommendations