Advertisement

Effect of nixtamalization processes on mitigation of acrylamide formation in tortilla chips

  • Alfonso Topete-Betancourt
  • Juan de Dios Figueroa CárdenasEmail author
  • Adriana Lizbeth Rodríguez-Lino
  • Elvira Ríos-Leal
  • Eduardo Morales-Sánchez
  • Héctor Eduardo Martínez-Flores
Article
  • 8 Downloads

Abstract

Acrylamide can be generated from food components during tortilla chips frying. Thus, the aim of this research was to study different nixtamalization processes as traditional (TNP) with lime [Ca(OH)2], ecological (ENP) with CaCO3, classic nixtamalization (CNP) that uses wood ash and extrusion (EXT) with no Ca+2 source on mitigating the acrylamide formation in deep-fat frying tortilla chips. Acrylamide quantification was done through HPLC–UV. Lower acrylamide content in tortilla chips was for CNP with 46.3 µg/kg, followed by TNP with 55.0 µg/kg, ENP with 694.6 µg/kg and EXP with 1443.4 µg/kg. Differences in acrylamide values among samples can be related to effect of cations (Ca2+, Mg2+, Fe2+, Zn2+, Na+ and K+) present in wood ashes, lime and salts used as raw materials. Correlation of (r = 0.85; p <0.0005) was observed in color of tortilla chips, moisture, texture, blisters, and oil with acrylamide. Nixtamalization process is an effective and inexpensive strategy for acrylamide mitigation.

Keywords

Acrylamide Nixtamalization Tortilla chips Mono- and di-cations 

Notes

Acknowledgements

Alfonso Topete Betancourt thanks the CONACYT for the Ph.D. scholarship.

References

  1. AACC International Approved Methods of Analysis. The Association: St Paul, MN. (2010)Google Scholar
  2. Barber DS, Hunt J, LoPachin RM, Ehrich M. Determination of acrylamide and glycidamide in rat plasma by reversed-phase high performance liquid chromatography. J. Chrom. B Biomed. Sci. Appl. 758: 289–293 (2001)CrossRefGoogle Scholar
  3. Campechano EM, Figueroa-Cárdenas JD, Arámbula-Villa G, Martínez-Flores HE, Jiménez-Sandoval SJ, Luna-Bárcenas JG. New ecological nixtamalization process for tortilla production and its impact on the chemical properties of whole corn flour and wastewater effluents. Int. J. Food Sci. Technol. 47: 564–571 (2012)CrossRefGoogle Scholar
  4. Delgado RM, Luna-Bárcenas G, Arámbula-Villa G, Azuara E, López-Peréa P, Salazar R. Effect of water activity in tortilla and its relationship on the acrylamide content after frying. J. Food Eng. 143: 1–7 (2014)CrossRefGoogle Scholar
  5. Elder VA, Fulcher JG, Leung HK, Topor MG. Method for reducing acrylamide formation in thermally processed foods such as snack foods and bakery products. US 2005064 A1 20050324 Application: US 2004-929922 20040830 (2005)Google Scholar
  6. Figueroa-Cárdenas JD, Rodríguez-Chong A, Véles-Medina JJ. Proceso ecológico de nixtamalización para la producción de harinas, masa y tortillas integrales. Mexican Patent 289339 (in Spanish) (2011)Google Scholar
  7. Friedman M. Chemistry, biochemistry, and safety of acrylamide. A review. J. Agric. Food Chem. 51: 4504–4526 (2003)CrossRefGoogle Scholar
  8. Granvogl M, Schieberle P. Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide. J. Agric. Food Chem. 54: 5933–5938 (2006)CrossRefGoogle Scholar
  9. Gökmen V, Şenyuva HZ. Study of color and acrylamide formation in coffee, wheat flour and potato chips during heating. Food Chem. 99: 238–243 (2006)CrossRefGoogle Scholar
  10. Gökmen V, Şenyuva HZ. Acrylamide formation is prevented by divalent cations during the Maillard reaction. Food Chem. 103: 196–203 (2007a)CrossRefGoogle Scholar
  11. Gökmen V, Şenyuva HZ. Effects of some cations on the formation of acrylamide and furfurals in glucose-asparagine model system. Eur. Food Res. Technol. 22: 815–820 (2007b)CrossRefGoogle Scholar
  12. Hu Q, Xu X, Fu Y, Li Y. Rapid methods for detecting acrylamide in thermally processed foods: A review. Food Control 56: 135–146 (2015)CrossRefGoogle Scholar
  13. Kalita D, Jayanty SS. Reduction of acrylamide formation by vanadium salt in potato french fries and chips. Food Chem. 138: 644–649 (2013)CrossRefGoogle Scholar
  14. Kim SH, Hwang JH, Lee KG. Analysis of acrylamide using gas chromatography-nitrogen phosphorus detector (GC-NPD). Food Sci. Biotech. 20: 835–839 (2011)CrossRefGoogle Scholar
  15. Lindsay RC, Jang S. Model systems for evaluating factors affecting acrylamide formation in deep fried food. Adv. Exp. Med. Biol. 561: 329–341 (2005)CrossRefGoogle Scholar
  16. Martins SIFS, Jongen WMF, Van Boekel MAJS. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 11: 364–373 (2001)CrossRefGoogle Scholar
  17. Mariscal-Moreno M, Figueroa-Cárdenas JD, Santiago-Ramos D, Arámbula Villa G, Jiménez-Sandoval S, Rayas-Duarte P, Véles-Medina JJ, Martínez Flores H. The effect of different nixtamalization processes on some physicochemical properties, nutritional composition and glycemic index. J. Cereal Sci. 65: 140–146 (2015)CrossRefGoogle Scholar
  18. Martínez-Flores HE, Martínez-Bustos F, Figueroa JDC, González-Hernández J. Studies and biological assays in corn tortillas made from fresh masa prepared by extrusion and nixtamalization processes. J. Food Sci. 67: 1196–1199 (2002)CrossRefGoogle Scholar
  19. Mestdagh F, De Wilde T, Delporte K, Van Peteghem C, De Meulenaer B. Impact of chemical pre-treatments on the acrylamide formation and sensorial quality of potato crisps. Food Chem. 106: 914–922 (2008)CrossRefGoogle Scholar
  20. Mottram DS, Wedzicha BL, Dodson AT. Acrylamide is formed in the Maillard reaction. Nature. 419: 448–449 (2002)CrossRefGoogle Scholar
  21. Mulla MZ, Bharadwaj VR, Annapure AS, Singhal RS. Effect of formulation and processing parameters on acrylamide formation: A case study on extrusion of blends of potato flour and semolina. LWT Food Sci. Technol. 44: 1643–1648 (2011)CrossRefGoogle Scholar
  22. Oracz J, Nebesny E, Żyżelewicz D. New trends in quantification of acrylamide in food products. Talanta. 86: 23–34 (2011)CrossRefGoogle Scholar
  23. Pedrechi F, Moyano P, Kaack K, Granby K. Color changes and acrylamide formation in fried potato slices. Food Res. Int. 38: 1–9 (2005)CrossRefGoogle Scholar
  24. Ramonaitytè DT, Kersience M, Adams A, Tehrani KA, De Kimpe N. The interaction of metals ions with Maillard reaction products in a lactose glycine model system. Food Res. Int. 42: 331–336 (2009)CrossRefGoogle Scholar
  25. Salazar R, Arámbula-Villa G, Vázquez-Landaverde PA, Hidalgo JF, Zamora R. Mitigating effect of amaranth (Amarantus hypochondriacus) protein on acrylamide formation in foods. Food Chem. 135: 2293–2298 (2012)CrossRefGoogle Scholar
  26. Salazar R, Arámbula-Villa G, Luna-Bárcenas G, Figueroa-Cárdenas JD, Azuera E, Vázquez-Landaverde PA. Effect of added calcium hydroxide during corn nixtamalization on acrylamide content in tortilla chips. LWT Food Sci. Technol. 56: 87–92 (2014)CrossRefGoogle Scholar
  27. Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert M-C, Reidiker S. Acrylamide from Maillard reaction products. Nature. 419: 449 (2002)CrossRefGoogle Scholar
  28. Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem. 50: 4998–5006 (2002)CrossRefGoogle Scholar
  29. Tomoda Y, Hanaoka A, Yasuda T, Takayama T, Hiwatashi A. Method of decreasing acrylamide in food cooked under heat. US Patent Applications: US2004/0126469 A1 (2004)Google Scholar
  30. Taubert D, Harlfinger S, Henkes L, Berkels R, Schömig E. Influence of processing parameters on acrylamide formation during frying of potatoes. J. Agric. Food Chem. 52: 2735–2739 (2004)CrossRefGoogle Scholar
  31. Wang H, Feng F, Guo Y, Shuang S, Choi MMF. HPLC-UV quantitative analysis of acrylamide in baked and deep-fried Chinese foods. J. Food Compos. Anal. 31: 7–11 (2013)CrossRefGoogle Scholar
  32. Weisshaar R. Acrylamide in heated potato products—analytics and formation routes. Eur. J. Lipid Sci. Technol. 106: 786–792 (2004)CrossRefGoogle Scholar
  33. Wu X, Yu D, Kong F, Yu S. Effects of divalent cations on the formation of 4(5)-methylimidazole in fructose/ammonium hydroxide caramel model reaction. Food Chem. 201: 253–258 (2016)CrossRefGoogle Scholar
  34. Zamora R, Delgado RM, Hidalgo FJ. Amino phospholipids and lecithins as mitigating agents for acrylamide in asparagine/glucose and asparagine/2,4-decadienal model systems. Food Chem. 126: 104–108 (2011)CrossRefGoogle Scholar
  35. Zeng X, Cheng K-W, Du Y, Kong R, Lo C, Chu IK, Chen F, Wang M. Activities of hydrocolloids as inhibitors of acrylamide formation in model systems and fried potato strips. Food Chem. 121: 424–428 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology 2019

Authors and Affiliations

  • Alfonso Topete-Betancourt
    • 1
  • Juan de Dios Figueroa Cárdenas
    • 1
    Email author
  • Adriana Lizbeth Rodríguez-Lino
    • 2
  • Elvira Ríos-Leal
    • 3
  • Eduardo Morales-Sánchez
    • 4
  • Héctor Eduardo Martínez-Flores
    • 5
  1. 1.Cinvestav Unidad-QuerétaroQuerétaroMexico
  2. 2.BiotecnologíaUniversidad Tecnológica de MoreliaMoreliaMexico
  3. 3.Departamento de Biotecnología y BioingenieríaCINVESTAV-IPNMexico CityMexico
  4. 4.CICATA-IPN Unidad QuerétaroQuerétaroMexico
  5. 5.Facultad de Químico FarmacobiologíaUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico

Personalised recommendations