Selection and characterisation of the predominant Lactobacillus species as a starter culture in the preparation of kocho, fermented food from enset

  • Helen Weldemichael WeldeselassieEmail author
  • Shimelis Admassu Emire
  • Melaku Alemu


Enset (Ensete ventricosum (Welw.) Cheesman) (false banana) plant is a multipurpose traditional crop widely cultivated in the south and southwestern Ethiopia. A study was conducted to determine the predominant microbes from kocho for subsequent use as a starter culture. Accordingly, a total of 40 lactic acid bacteria associated with kocho were characterized both at the phenotypic and genotypic level. Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus paracasei/casei and Lactobacillus fermentum were the isolated strains during kocho fermentation. Most L. plantarum showed rapid acidification and the higher growth rate than L. brevis. Based on these results L. plantarum (n = 10) and L. brevis (n = 3) were selected as possible starter strains and applied to enset pulp in laboratory scale. These starter strains showed fast pH reduction, increased microbial load than control sample and the possibility of a single strain in the fermentation of enset pulps for the production of kocho.


Enset Kocho Starter strain Lactobacillus plantarum Lactobacillus brevis 



We thank Melanie Huch and Dominic Stoll for their supervision in the microbiological study, and Luisa Martinez-Postigo and Lilia Rudolf, for excellent technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10068_2019_555_MOESM1_ESM.docx (532 kb)
Supplementary material 1 (DOCX 532 kb)


  1. Achi OK. The potential for upgrading traditional fermented foods through biotechnology. Afr. J. Biotechnol. 4: 375–380 (2005)Google Scholar
  2. Birmeta G. Genetic variability and biotechnological studies for the conservation and improvement of Ensete ventricosum. PhD thesis, University of Agricultural Sciences, Alnarp, Swedish (2004)Google Scholar
  3. Bosha A, Lagibo A, Tana T, Mohammed W, Tesfaye B, Karlsson LM. Nutritional and chemical properties of fermented food of wild and cultivated genotypes of enset (Ensete ventricosum). Food Res. Int. 89: 806–811 (2016)CrossRefGoogle Scholar
  4. Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A, Powell LB, Prajapati JB, Seto Y, Schure ET, Boven AV, Vankerckhoven V, Zgoda A, Tuijtelaars S, Hansen BE. Food fermentations: microorganisms with technological beneficial use. Int. J. Food Microbiol. 154:87–97 (2012)CrossRefGoogle Scholar
  5. Brandt AS, Anita S, Clifton HJ, Endale T, Mulugeta D, Gizachew W, Gebre Y, Masayoshi S, Shiferaw T. The “Tree against hunger” Enset-based agricultural systems in Ethiopia. American Association for the Advancement of Science, Washington (1997)Google Scholar
  6. Capozzi V, Fragasso M, Romaniello R, Berbegal C, Russo P, Spano G. Spontaneous food fermentations and potential risks for human health. Fermentation 3: 1–19 (2017)CrossRefGoogle Scholar
  7. CSA. Central Statistical Agency Agricultural Sample Survey. Report on area and production of major crops (Private peasant holding, Meher season). Addis Ababa (2017)Google Scholar
  8. Danylec N, Gobl A, Stoll DA, Hetzer B, Kulling SE, Huch M. Rubneribacter badeniensis gen. nov., sp. nov. and Enteroscipio rubneri gen. nov., sp. nov., new members of the Eggerthellaceae isolated from human faeces. Int. J. Syst. Evol. Microbiol. 68: 1533–1540 (2018)CrossRefGoogle Scholar
  9. De Roos J, De Vuyst L. Acetic acid bacteria in fermented foods and beverages. Curr. Opin. Biotechnol. 49:115–119 (2018)CrossRefGoogle Scholar
  10. Edward VA, Huch M, Dortu C, Thonart P, Egounlety M, Van Zyl PJ, Singh S, Holzapfel WH, Franz CMAP. Biomass production and small-scale testing of freeze-dried lactic acid bacteria starter strain for cassava fermentations. Food Control 22: 389–395 (2010)CrossRefGoogle Scholar
  11. Fguiri I, Ziadi M, Rekaya K, Samira A, Khorchani T. Isolation and characterization of lactic acid bacteria strains from raw Camel Milk for Potential Use in the Production of Yogurt. J. Food Sci. Nutr. 3: 1–8 (2017)CrossRefGoogle Scholar
  12. Franz CMAP, Huch M, Mathara JM, Abriouel H, Benomar N, Reid G, Galvez A, Holzapfel WH. African fermented foods and probiotics. Int. J. Food Microbiol. 190: 84–96 (2014)CrossRefGoogle Scholar
  13. Gashe BA. Kocho fermentation. J. Appl. Bacteriol. 62: 473–477 (1987)CrossRefGoogle Scholar
  14. Holzapfel WH. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int. J. Food Microbiol. 75: 197–212 (2002)CrossRefGoogle Scholar
  15. Hubalek Z. Protectants used in the cryopreservation of microorganisms. Cryobiology 46: 205–229 (2003)CrossRefGoogle Scholar
  16. Hunduma T, Ashenafi M. Effect of altitude on microbial succession during traditional enset (Ensete Ventricosum) fermentation. Int. J. Food Nutr. Public Health 4: 39–51 (2011)Google Scholar
  17. Konig H, Frohlich J. Lactic Acid Bacteria. In: Biology of Microorganisms on Grapes, in Must and in Wine. König H, Unden G, Fröhlich J (eds). Springer, Berlin (2009)CrossRefGoogle Scholar
  18. Kostinek M, Specht I, Edward VA, Pinto C, Egounlety M, Sossa C, Mbugua S. Characterisation and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures. Int. J. Food Microbiol. 114: 342–351 (2007)CrossRefGoogle Scholar
  19. Kostinek M, Specht I, Edward VA, Schillinger U, Hertel C, Holzapfel WH, Franz CMAP. Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food. Syst. Appl. Microbiol. 28: 527–540 (2005)CrossRefGoogle Scholar
  20. Lewis CL, Craig CC, Senecal AG. Mass and density measurements of live and dead gram-negative and gram-positive bacterial populations. Appl. Environ. Microbiol. 80: 3622–3631 (2014)CrossRefGoogle Scholar
  21. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Mills D. Comparative genomics of the lactic acid bacteria. PNAS 103: 15611–15616 (2006)CrossRefGoogle Scholar
  22. Marroki A, Zúñiga M, Kihal M, Pérez- Martínez G. Characterization of Lactobacillus from Algerian goat’s milk based on phenotypic, 16S rDNA sequencing and their technological properties. Braz. J. Microbiol. 42: 158–171 (2011)CrossRefGoogle Scholar
  23. Mckellar RC, Knight K. A combined discrete-continuous model describing the lag phase of Listeria monocytogenes. Int. J. Food Microbiol. 54: 171–180 (2000)CrossRefGoogle Scholar
  24. Minaleshewa A, Chandravanshi BS. Levels of major, minor and trace elements in commercially available enset (Ensete ventricosum (Welw.), Cheesman) food products (Kocho and Bulla) in Ethiopia. J. Food Compost. Anal. 21: 545–552 (2008)CrossRefGoogle Scholar
  25. Montet D, Ray RC, Zakhia-Rozis N. Lactic acid fermentation of vegetables and fruits. pp. 108–141. In: Microorganisms and Fermentation of Traditional Foods. Montet D, Ray RC (eds). CRC Press Taylor, Boca Raton (2014)Google Scholar
  26. Papalexandratou Z, Lefeber T, Bahrim B, Lee OS, Daniel Hm, De Vuyst L. Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiol. 35: 73–85 (2013)CrossRefGoogle Scholar
  27. Parthuisot N, Catala P, Lebaron P, Clermont D, Bizet C. A sensitive and rapid method to determine the viability of freeze-dried bacterial cells. Lett. Appl. Microbiol. 36:412–417 (2003)CrossRefGoogle Scholar
  28. Ruiz P, Seseña S, Llanos M. A comparative study of different PCR-based DNA fingerprinting techniques for typing of lactic acid bacteria. Eur. Food Res. Technol. 239: 87–98 (2014)CrossRefGoogle Scholar
  29. Schleifer K, Ehrmann M, Beimfohr C, Brockmann E, Ludwig W, Amann R. Application of molecular methods for the classification and identification of lactic acid bacteria. Int. Dairy J. 5: 1081–1094 (1995)CrossRefGoogle Scholar
  30. Senait Z, Kelbessa U, Ayele N. Co-fermentation of kocho with barley for an improved injera. Ethiopia J. Sci. 20:261–270 (1997)Google Scholar
  31. Steinkraus KH. Fermentations in world food processing. Compr. Rev. Food Sci F. 1: 23–32 (2002)CrossRefGoogle Scholar
  32. Suzuki K, Funahashi W, Koyanagi M, Yamashita H. Lactobacillus paracollinoides sp. nov., isolated from brewery environments. Int. J. Syst. Evol. Microbiol. 54: 115–117 (2004)CrossRefGoogle Scholar
  33. Yemataw Z, Mohamed H, Diro M, Addis T, Blomme G. Enset (Ensete ventricosum) clone selection by farmers and their cultural practices in southern Ethiopia. Genet. Resour. Crop Evol. 61: 1091–1104. (2014)CrossRefGoogle Scholar
  34. Yousif NMK, Huch M, Schuster T, Cho G, Dirar HA, Holzapfel WH, Franz CMAP. Diversity of lactic acid bacteria from Hussuwa, a traditional African fermented sorghum food. Food Microbiol. 27:757–768 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology 2019

Authors and Affiliations

  • Helen Weldemichael Weldeselassie
    • 1
    Email author
  • Shimelis Admassu Emire
    • 1
  • Melaku Alemu
    • 2
  1. 1.School of Chemical and BioengineeringAddis Ababa Institute of TechnologyAddis AbabaEthiopia
  2. 2.Ethiopian Agricultural Research Council SecretariatAddis AbabaEthiopia

Personalised recommendations