Oil from Antarctic krill (Euphausia superba) facilitates bone formation in dexamethasone-treated mice

  • Lei Mao
  • Fei Wang
  • Yuanyuan Li
  • Yufeng Dai
  • Yanjun Liu
  • Jingfeng WangEmail author
  • Changhu Xue


Glucocorticoids are the leading cause of secondary osteoporosis. In the current study, the in vivo effects of Antarctic krill (Euphausia superba) oil (AKO) on dexamethasone-treated mice were investigated. Results showed that AKO significantly prevents bone loss, as evidenced by improved bone mineral density, biomechanical strength, and cancellous bone microstructure. Fluorescence double-labeling of femur showed that AKO induces new bone formation. Toluidine blue staining of marrow cavity indicated that AKO increases the number of trabecula, and decreases the generation of adipose cells. Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator-activated receptor γ (PPARγ) are the switches for osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells, respectively. AKO significantly promoted the expression of Runx2 protein, and reduced PPARγ expression in bone tissue. Furthermore, AKO increased the mRNA expression of osteogenesis-related genes and decreased the expression of adipogenesis-related genes. In conclusion, AKO improved glucocorticoid-induced osteoporosis via promoting bone formation.


Antarctic krill oil Dexamethasone Bone formation Runt-related transcription factor 2 Peroxisome proliferator-activated receptor γ 



This study is financially supported by Primary Research & Development Plan of Shandong Province (2016YYSP017), Key S&T Special Projects of Shandong Province (2015ZDZX05003) and National Key Research and Development Program (2017YFF0207800).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10068_2018_463_MOESM1_ESM.docx (16 kb)
Table 1 The primers used for determination of mRNA expression (DOCX 15 kb)


  1. Appleton KM, Fraser WD, Rogers PJ, Ness AR, Tobias JH. Supplementation with a low-moderate dose of n-3 long-chain PUFA has no short-term effect on bone resorption in human adults. Br. J. Nutr. 105: 1145–1149 (2011)CrossRefPubMedCentralGoogle Scholar
  2. Atkinson A, Siegel V, Pakhomov EA, Jessopp MJ, Loeb V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Pt. I. 56: 727–740 (2009)CrossRefGoogle Scholar
  3. Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol. Metab. 21: 294–301 (2010)CrossRefPubMedCentralGoogle Scholar
  4. Bonnet N, Ferrari SL. Effects of long-term supplementation with omega-3 fatty acids on longitudinal changes in bone mass and microstructure in mice. J. Nutr. Biochem. 22: 665–672 (2011)CrossRefPubMedCentralGoogle Scholar
  5. Canalis E. Mechanisms of glucocorticoid action in bone. Curr. Osteoporos. Rep. 3: 98–102 (2005)CrossRefPubMedCentralGoogle Scholar
  6. Cao PC, Xiao WX, Yan YB, Zhao X, Liu S, Feng J, Zhang W, Wang J, Feng YF, Lei W. Preventive effect of crocin on osteoporosis in an ovariectomized rat model. Evid Based Complim. Altern. 2014: 825181 (2014)Google Scholar
  7. Casado-Diaz A, Santiago-Mora R, Dorado G, Quesada-Gomez JM. The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: potential implication in osteoporosis. Osteoporosis Int. 24: 1647–1661 (2013)CrossRefGoogle Scholar
  8. Fetterman JW, Jr., Zdanowicz MM. Therapeutic potential of n-3 polyunsaturated fatty acids in disease. Am. J. Health Syst. Pharm. 66: 1169–1179 (2009)CrossRefPubMedCentralGoogle Scholar
  9. Fink T, Rasmussen JG, Emmersen J, Pilgaard L, Fahlman A, Brunberg S, Josefsson J, Arnemo JM, Zachar V, Swenson JE, Frobert O. Adipose-derived stem cells from the brown bear (Ursus arctos) spontaneously undergo chondrogenic and osteogenic differentiation in vitro. Stem Cell Res. 7: 89–95 (2011)CrossRefPubMedCentralGoogle Scholar
  10. Jeon MJ, Kim JA, Kwon SH, Kim SW, Park KS, Park SW, Kim SY, Shin CS. Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J. Biol. Chem. 278: 23270–23277 (2003)CrossRefPubMedCentralGoogle Scholar
  11. Kawai M, Rosen CJ. PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis. Nat. Rev. Endocrinol. 6: 629–636 (2010)CrossRefPubMedCentralGoogle Scholar
  12. Li J, Zhang N, Huang X, Xu J, Fernandes JC, Dai K, Zhang X. Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis. 3: e832 (2013)CrossRefGoogle Scholar
  13. Mosna F, Sensebe L, Krampera M. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev. 19: 1449–14470 (2010)CrossRefPubMedCentralGoogle Scholar
  14. Pasqualetti S, Congiu T, Banfi G, Mariotti M. Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale. Int. J. Exp. Pathol. 96: 11–20 (2015)CrossRefPubMedCentralGoogle Scholar
  15. Phleger CF, Nelson MM, Mooney BD, Nichols PD. Interannual and between species comparison of the lipids, fatty acids and sterols of Antarctic krill from the US AMLR Elephant Island survey area. Comp. Biochem. Phys. B. 131: 733–747 (2002)CrossRefGoogle Scholar
  16. Poulsen RC, Moughan PJ, Kruger MC. Long-chain polyunsaturated fatty acids and the regulation of bone metabolism. Exp. Biol. Med. 232: 1275–1288 (2007)CrossRefGoogle Scholar
  17. Rauch A, Seitz S, Baschant U, Schilling AF, Illing A, Stride B, Kirilov M, Mandic V, Takacz A, Schmidt-Ullrich R, Ostermay S, Schinke T, Spanbroek R, Zaiss MM, Angel PE, Lerner UH, David JP, Reichardt HM, Amling M, Schutz G, Tuckermann JP. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 11: 517–531 (2010)CrossRefPubMedCentralGoogle Scholar
  18. Reid DM, Devogelaer JP, Saag K, Roux C, Lau CS, Reginster JY, Papanastasiou P, Ferreira A, Hartl F, Fashola T, Mesenbrink P, Sambrook PN. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 373: 1253–1263 (2009)CrossRefGoogle Scholar
  19. Shi XM, Blair HC, Yang X, McDonald JM, Cao X. Tandem repeat of C/EBP binding sites mediates PPARgamma2 gene transcription in glucocorticoid-induced adipocyte differentiation. J. Cell Biochem. 76: 518–527 (2000)CrossRefPubMedCentralGoogle Scholar
  20. van Staa TP, Geusens P, Pols HA, de Laet C, Leufkens HG, Cooper C. A simple score for estimating the long-term risk of fracture in patients using oral glucocorticoids. QJM. 98: 191–198 (2005)CrossRefPubMedCentralGoogle Scholar
  21. Weinstein RS, Jilka RL, Almeida M, Roberson PK, Manolagas SC. Intermittent parathyroid hormone administration counteracts the adverse effects of glucocorticoids on osteoblast and osteocyte viability, bone formation, and strength in mice. Endocrinology 151: 2641–2649 (2010)CrossRefPubMedCentralGoogle Scholar
  22. Wu RW, Lin TP, Ko JY, Yeh DW, Chen MW, Ke HC, Wu SL, Wang FS. Cannabinoid receptor 1 regulates ERK and GSK-3beta-dependent glucocorticoid inhibition of osteoblast differentiation in murine MC3T3-E1 cells. Bone 49: 1255–1263 (2011)CrossRefPubMedCentralGoogle Scholar
  23. Yao W, Cheng Z, Busse C, Pham A, Nakamura MC, Lane NE. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. Arthritis Rheum. 58: 1674–1686 (2008)CrossRefPubMedCentralGoogle Scholar
  24. Yun SI, Yoon HY, Jeong SY, Chung YS. Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase 3beta. J. Bone Miner. Metab. 27: 140–148 (2009)CrossRefPubMedCentralGoogle Scholar
  25. Zhou DA, Zheng HX, Wang CW, Shi D, Li JJ. Influence of glucocorticoids on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. BMC Musculoskel. Dis. 15: 1471–2474 (2014)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Lei Mao
    • 1
  • Fei Wang
    • 1
  • Yuanyuan Li
    • 1
  • Yufeng Dai
    • 1
  • Yanjun Liu
    • 1
  • Jingfeng Wang
    • 1
    Email author
  • Changhu Xue
    • 1
  1. 1.College of Food Science and EngineeringOcean University of ChinaQingdaoChina

Personalised recommendations