Advertisement

Food Science and Biotechnology

, Volume 28, Issue 1, pp 209–214 | Cite as

Antidiabetic effect of an extract of nutricultured Brassica napus containing vanadium from a Jeju water concentrate

  • Ji-Hyun Yun
  • Sung-Hwan Park
  • Goo-Hee Choi
  • In-Jae Park
  • Jin-Ha Lee
  • Ok-Hwan Lee
  • Jung-Hyon Kim
  • Yun-Hee Seo
  • Ju-Hyun ChoEmail author
Article
  • 45 Downloads

Abstract

The purpose of this study was to determine the antidiabetic effect of an extract of nutricultured Brassica napus containing vanadium (BECV). The BECV was prepared following nutriculture of B. napus with a Jeju water vanadium concentrate for 7 day. The BECV was administered to db/db mice for 8 weeks at different dosages (0.028, 0.14, and 0.7 μg/kg; as vanadium concentration in BECV). After 8 weeks, the BECV results showed mouse blood glucose concentrations to significantly decrease, in a dose-dependent manner, compared with the results for control mice. In addition, the concentrations of triglyceride, total cholesterol, and glycated hemoglobin were significantly lower after 8 weeks of administration of 0.7 μg/kg BECV. Therefore, the BECV may have protective effects against type 2 diabetes.

Keywords

Vanadium Brassica napus extract Antidiabetic effect db/db mouse 

Notes

Acknowledgements

This research was financially supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) and Jeju Institute for Regional Program Evaluation (GWIRPE) through the Leading Industry Development for Economic Region [No. R0000359].

References

  1. Ashiq U, Jamal RA, Mahroof-Tahir M, Maqsood ZT, Khan KM, Omer I, Choudhary MI. Enzyme inhibition, radical scavenging, and spectroscopic studies of vanadium(IV)-hydrazide complexes. J. Enzym. Inh. Med. Chem. 24: 1336–1343 (2009)CrossRefGoogle Scholar
  2. Bendayan M, Gingras D. Effects of vanadate administration on blood glucose and insulin levels as well as on the exocrine pancreatic function in streptozotocindiabetic rats. Diabetologia. 32: 561–567 (1989)CrossRefGoogle Scholar
  3. Bhuiyan MS, Fukunaga K. Cardioprotection by vanadium compounds targeting Akt-mediated signaling. J Pharmacol Sci. 110: 1–13 (2009)CrossRefGoogle Scholar
  4. Bollen M, Miralpeix M, Ventura F, Toth B, Bartrons R, Stalmans W. Oral administration of vanadate to streptozotocin-diabetic rats restores the glucose-induced activation of liver glycogen synthase. Biochem. J. 267: 269–271 (1990)CrossRefGoogle Scholar
  5. Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 14: 575–585 (2011)CrossRefGoogle Scholar
  6. Brichard SM, Bailey CJ, Henquin JC. Marked improvement of glucose homeostasis in diabetic ob/ob mice given oral vanadate. Diabetes. 39: 1326–1332 (1990)CrossRefGoogle Scholar
  7. Brichard SM, Lederer J, Henquin JC. The insulin-like properties of vanadium: A curiosity or a perspective for the treatment of diabetes? Diabete Metab. 17: 435–440 (1991)Google Scholar
  8. Brichard SM, Pottier AM, Henquin JC. Long term improvement of glucose homeostasis by vanadate in obese hyperinsulinemic fa/fa rats. Endocrinology. 125: 2510–2516 (1989)CrossRefGoogle Scholar
  9. Domingo JL, Gomez M, Sanchez DJ, Llobet JM, Keen CL. Toxicology of vanadium compounds in diabetic rats: The action of chelating agents on vanadium accumulation. Mol. Cell. Biochem. 153: 233–240 (1995)CrossRefGoogle Scholar
  10. Eledrisi MS, Alshanti MS, Shah MF, Brolosy B, Jaha N. Overview of the diagnosis and management of diabetic ketoacidosis. Afr J Med Sci. 331: 243–251 (2006)CrossRefGoogle Scholar
  11. Florkowski C. HbA1c as a diagnostic test for diabetes mellitus-reviewing the evidence. Clin Biochem Rev. 34: 75–83 (2013)Google Scholar
  12. Ghosh S, Suryawanshi SA. Effect of vinca rosea extracts in treatment of alloxan diabetes in male albino rats. Indian J. Ex. Biol. 39: 748–758 (2001)Google Scholar
  13. Greer JJ, Ware DP, Lefer DJ. Myocardial infarction and heart failure in the db/db diabetic mouse. Am. J. Physiol Heart Circ Physiol. 290: H146–H153 (2006)CrossRefGoogle Scholar
  14. Heyliger CE, Tahiliani AG, McNeill JH. Effect of vanadate on elevated glucose and depressed cardiac performance of diabetic rats. Science. 227: 1474–1477 (1985)CrossRefGoogle Scholar
  15. Hwang SL, Chang HW. Natural vanadium-containing Jeju ground water stimulates glucose uptake through the activation of AMP-activated protein kinase in L6 myotubes. Mol. Cell. Biochem. 360: 401–409 (2012)CrossRefGoogle Scholar
  16. McNeill JH, Yuen VG, Hoveyda HR, Orvig C. Bis(maltolato)-oxovanadium (IV) is a potent insulin mimic. Med. Chem. 35: 1489–1491 (1992)CrossRefGoogle Scholar
  17. Meyerovitch I, Farfel Z, Sack J, Shechter Y. Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. J. Biol. Chem. 262: 6658–6662 (1987)Google Scholar
  18. Meyerovitch J, Rothenberg P, Shechter Y, Bonner-Weir S, Kahn CR. Vanadate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus. J. Clin. Invest. 87: 1286–1294 (1991)CrossRefGoogle Scholar
  19. Nyane NA, Tlaila TB, Malefane TG, Ndwandwe DE. Owira PO. Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights. Eur. J. Pharmacol. 803: 103–111 (2017)CrossRefGoogle Scholar
  20. Park SJ, Youn CK, Hyun JW, You HJ. The anti-obesity effect of natural vanadium-containing Jeju ground water. Biol. Trace. Elem. Res. 151: 294–300 (2013)CrossRefGoogle Scholar
  21. Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed. 2: 320–330 (2012)CrossRefGoogle Scholar
  22. Posner BI, Faure R, Burgess JW, Bevan AP, Lachance D, Zhang-Sun G, Fantus IG, Ng JB, Hall DA, Lum BS, Shaver A. Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem. 269: 4596–4604 (1994)Google Scholar
  23. Poucheret P, Verma S, Grynpas MD, McNeill JH. Vanadium and diabetes. Mol. Cell. Biochem. 188: 73–80 (1998)CrossRefGoogle Scholar
  24. Pugazhenthi S, Angel JF, Khandelwal RL. Long-term effects of vanadate treatment on glycogen metabolizing and lipogenic enzymes of liver in genetically diabetic (db/db) mice. Metabolism. 40: 941–946 (1991)CrossRefGoogle Scholar
  25. Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y. Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res. Clinl. Practice. 62: 139–148 (2003)CrossRefGoogle Scholar
  26. Ramanadham S, Mongold JJ, Brownsey RW, Cros GH, McNeill JH. Oral vanadyl sulfate in treatment of diabetes mellitus in rats. Am. J. Physiol. 257: H904–H911 (1989)Google Scholar
  27. Rao BK, Kesavulu MM, Apparao C. Antihyperglycemic activity of Momordica cymbalaria in alloxan diabetic rats. J. Ethnopharmacol. 78: 67–71 (2001)CrossRefGoogle Scholar
  28. Reul BA, Amin SS, Buchet JP, Ongemba LN, Crans DC, Brichard SM. Effects of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. Brit. J. Pharmacol. 126: 4674–4677 (1999)CrossRefGoogle Scholar
  29. Sakurai H, Tsuchiya K, Nukatsuka M, Sofue M,- Kawada J. Insulin-like effects of vanadyl ion in streptozotocin-induced diabetic rats. J. Endocrinol. 126: 451–459 (1990)CrossRefGoogle Scholar
  30. Sekar N, Kanthasamy A, William S, Balasubramaniya N, Govindasamy S. Antioxidant effect of vanadate on experimental diabetic rats. Acta Diabetol. Lat. 27: 285–293 (1990)CrossRefGoogle Scholar
  31. Sekar N, Kanthasamy A, William S, Subramanian S, Govindasamy S. Insulin actions of vanadate in diabetic rats. Pharmacol. Res. 22: 207–217 (1989)CrossRefGoogle Scholar
  32. Shisheva A, Ikonomov O, Shechter Y. The protein tyrosine phosphatase inhibitor, pervanadate, is a powerful antidiabetic agent in streptozotocin-treated diabetic rats. Endocrinology. 134: 507–510 (1994)CrossRefGoogle Scholar
  33. Srivastava AK. Section Review-Oncologic, Endocrine & Metabolic:Potential use of vanadium compounds in the treatment of diabetes mellitus. Expert Opin. Investig. Drugs. 4: 525–536 (1995)CrossRefGoogle Scholar
  34. Strout HV, Vicario PP, Biswas C, Superstein R, Brady EJ, Pilch PF, Berger J. Vanadate treatment of streptozotocin diabetic rats restores expression of the insulin responsive glucose transporter in skeletal muscle. Endocrinology. 126: 2728–2732 (1990)CrossRefGoogle Scholar
  35. Vigneri R, Goldfine, ID. Role of metformin in treatment of diabetes mellitus. Diabetes Care. 10: 118–122 (1987)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hurum Central Research Institute Co., Ltd.SeogwipoRepublic of Korea
  2. 2.Department of Food Science and BiotechnologyKangwon National UniversityChuncheonRepublic of Korea
  3. 3.Department of Culinary ArtsJeju Tourism UniversityJejuRepublic of Korea
  4. 4.EBO Co., Ltd.CheongjuRepublic of Korea

Personalised recommendations