Food Science and Biotechnology

, Volume 27, Issue 4, pp 1023–1030 | Cite as

Glycerides isolated from the aerial parts of Malva verticillata cause immunomodulation effects via splenocyte function and NK anti-tumor activity

  • Jung-Hwan Ko
  • Rodrigo Castaneda
  • Sun-Woo Joo
  • Hyoung-Geun Kim
  • Yeong-Geun Lee
  • Youn-Hyung Lee
  • Tong Ho Kang
  • Nam-In Baek


A preliminary study revealed that a 10 µg/mL n-BuOH fraction of Malva verticillata aerial parts significantly enhanced splenocyte proliferation and induced significant enhancement of natural-killer (NK) cell activity against tumor cells (YAC-1). This study was initiated to identify the principal components that exhibited these activities, and four glycerides were isolated through repeated SiO2 and ODS column chromatography. Structures of compounds 14 were determined to be (2S)-1-O-palmitoyl glyceride, (2S)-1-O-stearoyl glyceride, (2S)-1-O-linolenoyl glyceride, and (2S)-1,2-di-O-linoleoyl glyceride, respectively. Compounds 13 showed potential immune-enhancing activity in murine splenocyte and natural-killer (NK) cells at 10 µM. In contrast, compound 4 showed weak activity, indicating the monoacyl glycerides (13) are more effective than diacyl glyceride (4). Also, the longer the carbon number of the fatty acid in monoacyl glyceride, the better the activity, and the monoacyl glyceride including an unsaturated fatty acid (3) is more effective than the glycerides including the saturated fatty acids (12).


Malva verticillata Glyceride Splenocyte Natural killer cells Immunotherapy 



This work was supported by the Korea Evaluation Institute of Industrial Technology (Development of novel materials based on dual functions for improvement of atopic dermatitis and photoaging by regulating NFAT Grant number: 10076337), Republic of Korea.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Jonas WB. Alternative medicine. J. Fam. Pract. 45:34–37 (1997)Google Scholar
  2. 2.
    Israelsen LD. Phytomedicines: the greening of modern medicine. J. Altern. Comp. Med. 1:245–248 (1995)CrossRefGoogle Scholar
  3. 3.
    Manns MP, Wedemeyer H, Cornberg M. Treating viral hepatitis C: efficacy, side effects,and complications. Gut 55:1350–1359 (2006)CrossRefGoogle Scholar
  4. 4.
    Chu DT, Lepe-Zuniga J, Wong WL, LaPushin R, Mavligit GM. Fractionated extract of Astragalus membranaceus, a Chinese medicinal herb, potentiates LAK cell cytotoxicity generated by a low dose of recombinant interleukin-2. J Clin. Lab. Immunol. 26:183–187 (1988)Google Scholar
  5. 5.
    Chu DT, Lin JR, Wong W. The in vitro potentiation of LAK cell cytotoxicity in cancer and AIDS patients induced by F3-a fractionated extract of Astragalus membranaceus. Chung Hua Chung Liu Tsa Chih 16:167–171 (1994)Google Scholar
  6. 6.
    Johnson JJ, Mukhtar H. Curcumin for chemoprevention of colon cancer. Cancer letters 255:170–181 (2007)CrossRefGoogle Scholar
  7. 7.
    Odontuya G, Enkhmaa G, Batbayar N, Naran R, Inngjerdingen KT, Michaelsen TE, Paulsen BS. Pharmacological activities of a mongolian medicinal plant, Malva mohileviensis Down. Eur. J. Med. Plants. 2:230–241 (2012)CrossRefGoogle Scholar
  8. 8.
    Gonda R, Tomoda M, Shimizu N, Kanari M. Characterization of an acidic polysaccharide from the seeds of Malva verticillata stimulating the phagocytic activity of cells of the RES1. Planta Medica 56:73–76 (1990)CrossRefGoogle Scholar
  9. 9.
    Franke K, Strijowski U, Fleck G, Pudel F. Influence of chemical refining process and oil type on bound 3-chloro-1,2-propanediol contents in palm oil and rapeseed oil. LWT Food Sci. Technol. 42:1751–1754 (2009)CrossRefGoogle Scholar
  10. 10.
    Farese RV, Walther TC. Lipid droplets finally get a little RESPECT. Cell 139:855–860 (2009)CrossRefGoogle Scholar
  11. 11.
    Martin S, Parton RG. Lipid droplets: a unified view of a dynamic organelle. Nature Rev. Mol. Cell Biol. 7:373 (2006)CrossRefGoogle Scholar
  12. 12.
    Welte MA. Proteins under new management: lipid droplets deliver. Trends Cell Biol. 17:363–369 (2007)CrossRefGoogle Scholar
  13. 13.
    Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K. The lipid droplet is an important organelle for hepatitis C virus production. Nature Cell Biol. 9:1089–1097 (2007)CrossRefGoogle Scholar
  14. 14.
    Samsa MM, Mondotte JA, Iglesias NG, Assunção-Miranda I, Barbosa-Lima G, Da Poian A. T, Bozza PT, Gamarnik, AV. Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathogens 5:e1000632 (2009)CrossRefGoogle Scholar
  15. 15.
    Abdel-Hamid NM, Fawzy MA, El-Moselhy MA. Evaluation of hepatoprotective and anticancer properties of aqueous olive leaf extract in chemically induced hepatocellular carcinoma in rats. Am. J. Med. Med. Sci. 1:15–22 (2011)Google Scholar
  16. 16.
    Wu XY, Xiong J, Liu XH, Hu JF. Chemical constituents of the rare cliff plant Oresitrophe rupifraga and their antineuroinflammatory activity. Chem. Biodivers. 13:1030–1037 (2016)CrossRefGoogle Scholar
  17. 17.
    Ramos-Bueno RP, González-Fernández MJ, Guil-Guerrero JL. Various acylglycerols from common oils exert different antitumor activities on colorectal cancer cells. Nutri. Cancer 68:518–529 (2016)CrossRefGoogle Scholar
  18. 18.
    Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y, Zhang HG. Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J. Immunol. 176:1375–1385 (2006)CrossRefGoogle Scholar
  19. 19.
    Ben‐Eliyahu S, Page GG, Yirmiya R, Shakhar G. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int. J. Cancer 80:880–888 (1999)CrossRefGoogle Scholar
  20. 20.
    Hicks AM, Riedlinger G, Willingham MC, Alexander-Miller MA, Von Kap-Herr C, Pettenati MJ, Sanders AM, Weir MH, Du W, Kim J, Simpson AJG, Old LJ, Cui Z, Simpson AJ. Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc. Natl. Acad. Sci. 103:7753–7758 (2006)CrossRefGoogle Scholar
  21. 21.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 140:883–899 (2010)CrossRefGoogle Scholar
  22. 22.
    O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7:507–516 (2006)CrossRefGoogle Scholar
  23. 23.
    Thi NN, Song HS, Oh EJ, Lee YG, Ko JH, Kwon JE, Kang SC, Baek NI. Phenylpropanoids from Lilium Asiatic hybrid flowers and their anti-inflammatory activities. Appl. Biol. Chem. 60:527–533 (2017)CrossRefGoogle Scholar
  24. 24.
    Minn CV, Kiem PV, Huong LM, Kim YH. Cytotoxic constituents of Diadema setosum. Arch. Pharm. Res. 27:734–737 (2004)CrossRefGoogle Scholar
  25. 25.
    Han L, Wang T. Preparation of glycerol monostearate from glycerol carbonate and stearic acid. RSC Advances 6:34137–34145 (2016)CrossRefGoogle Scholar
  26. 26.
    Ogihara T, Amano N, Mitsui Y, Fujino K, Ohta H, Takahashi K, Matsuura H. Determination of the absolute configuration of a monoglyceride antibolting compound and isolation of related compounds from Radish leaves (Raphanus sativus). J. Nat. Prod. 80:872–878 (2017)CrossRefGoogle Scholar
  27. 27.
    Gaffney PR, Reese CB. Preparation of 2-O-arachidonoyl-1-O-stearoyl-sn-glycerol and other di-O-acyl glycerol derivatives. Tetrahedron letters, 38:2539–2542 (1997)CrossRefGoogle Scholar
  28. 28.
    Kodali DR. Improved method for the synthesis of 1-or 3-acyl-sn-glycerols. J. Lipid Res. 28:464–469 (1987)Google Scholar
  29. 29.
    Duralski AA, Spooner PJ, Watts A. Synthesis of optically active polyunsaturated diacylglycerols. Tetrahedron letters 30:3585–3588 (1989)CrossRefGoogle Scholar
  30. 30.
    Katayama S, Nishio T, Kishimura H, Saeki H. Immunomodulatory properties of highlyviscous polysaccharide extract from the Gagome alga (Kjellmaniella crassifolia). Plant Foods Hum. Nutr. 67:76–81 (2012)CrossRefGoogle Scholar
  31. 31.
    Zhao M, Wang Q, Ouyang Z, Han B, Wang W, Wei Y, Wu Y, Yang B. Selective fraction of Atractylodes lancea (Thunb.) DC. and its growth inhibitory effect on human gastric cancer cells. Cytotechnol. 66:201–208 (2014)CrossRefGoogle Scholar
  32. 32.
    Philippoussis F, Arguin C, Fortin M, Steff AM, Hugo P. Cellular specificity related to monoglyceride-induced cell death. Immunol. Lett. 83:221–230 (2002)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jung-Hwan Ko
    • 1
  • Rodrigo Castaneda
    • 1
  • Sun-Woo Joo
    • 1
  • Hyoung-Geun Kim
    • 1
  • Yeong-Geun Lee
    • 1
  • Youn-Hyung Lee
    • 2
  • Tong Ho Kang
    • 1
  • Nam-In Baek
    • 1
  1. 1.Department of Oriental Medicine Biotechnology, Graduate School of BiotechnologyKyung-Hee UniversityYonginRepublic of Korea
  2. 2.Department of Horticultural Biotechnology, Graduate School of BiotechnologyKyung-Hee UniversityYonginRepublic of Korea

Personalised recommendations