Advertisement

Food Science and Biotechnology

, Volume 27, Issue 4, pp 1165–1173 | Cite as

SMYD3-associated pathway is involved in the anti-tumor effects of sulforaphane on gastric carcinoma cells

  • Qing-Qing Dong
  • Qiu-Tong Wang
  • Lei Wang
  • Ya-Xin Jiang
  • Mei-Ling Liu
  • Hai-Jie Hu
  • Yong Liu
  • Hao Zhou
  • Hong-Peng He
  • Tong-Cun Zhang
  • Xue-Gang Luo
Article
  • 75 Downloads

Abstract

Sulforaphane (SFN), a natural compound derived from cruciferous vegetables, has been proved to possess potent anti-cancer activity. SMYD3 is a histone methyltransferase which is closely related to the proliferation and migration of cancer cells. This study showed that SFN could dose-dependently induce cell cycle arrest, stimulate apoptosis, and inhibit proliferation and migration of gastric carcinoma cells. Accompanied with these anti-cancer effects, SMYD3 and its downstream genes, myosin regulatory light chain 9, and cysteine-rich angiogenic inducer 61, was downregulated by SFN. Furthermore, overexpression of SMYD3 via transfection could abolish the effects of SFN, suggesting that SMYD3 might be an important mediator of SFN. To the best of our knowledge, this is the first report describing the role of SMYD3 in the anti-cancer of SFN. These findings might throw light on the development of novel anti-cancer drugs and functional food using SFN-rich cruciferous vegetables.

Keywords

Sulforaphane SET and MYND domain containing 3 Cell cycle Apoptosis Migration 

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos. 31470816; 31300642), the College Students’ Innovation and Entrepreneurship Training Program of Tianjin (No. 201510057057) and the Young Teachers’ Innovation Fund of Tianjin University of Science and Technology (No. 2016LG06).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Bayat Mokhtari R, Baluch N, Homayouni TS, Morgatskaya Z, Kumar S, Kazemi P, Yeger H. The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review. J Cell Commun Signal. Epub ahead of print (2017).Google Scholar
  2. 2.
    Houghton CA, Fassett RG, Coombes JS. Sulforaphane: translational research from laboratory bench to clinic. Nutr Rev. 71: 709-726 (2013).CrossRefPubMedGoogle Scholar
  3. 3.
    Juengel E, Maxeiner S, Rutz J, Justin S, Roos F, Khoder W, Tsaur I, Nelson K, Bechstein WO, Haferkamp A, Blaheta RA. Sulforaphane inhibits proliferation and invasive activity of everolimus-resistant kidney cancer cells in vitro. Oncotarget. 7: 85208-85219 (2016).PubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang L, Tian Z, Yang Q, Li H, Guan H, Shi B, Hou P, Ji M. Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway. Oncotarget. 6: 25917-31 (2015).PubMedPubMedCentralGoogle Scholar
  5. 5.
    Mondal A, Biswas R, Rhee YH, Kim J, Ahn JC. Sulforaphene promotes Bax/Bcl2, MAPK-dependent human gastric cancer AGS cells apoptosis and inhibits migration via EGFR, p-ERK1/2 down-regulation. Gen Physiol Biophys. 35: 25-34 (2016).PubMedGoogle Scholar
  6. 6.
    Xu C, Shen G, Yuan X, Kim JH, Gopalkrishnan A, Keum YS, Nair S, Kong AN. ERK and JNK signaling pathways are involved in the regulation of activator protein 1 and cell death elicited by three isothiocyanates in human prostate cancer PC-3 cells. Carcinogenesis. 27: 437-445 (2006).CrossRefPubMedGoogle Scholar
  7. 7.
    Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 6: 731-740 (2004).CrossRefPubMedGoogle Scholar
  8. 8.
    Hamamoto R, Silva FP, Tsuge M, Nishidate T, Katagiri T, Nakamura Y, Furukawa Y. Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci. 97: 113-118 (2006).CrossRefPubMedGoogle Scholar
  9. 9.
    Wang SZ, Luo XG, Shen J, Zou JN, Lu YH, Xi T. Knockdown of SMYD3 by RNA interference inhibits cervical carcinoma cell growth and invasion in vitro. BMB Rep. 41: 294-299 (2008).CrossRefPubMedGoogle Scholar
  10. 10.
    Medjkane S, Cock-Rada A, Weitzman JB. Role of the SMYD3 histone methyltransferase in tumorigenesis: local or global effects? Cell Cycle. 11: 1865 (2012).CrossRefPubMedGoogle Scholar
  11. 11.
    Sarris ME, Moulos P, Haroniti A, Giakountis A, Talianidis I. Smyd3 Is a Transcriptional Potentiator of Multiple Cancer-Promoting Genes and Required for Liver and Colon Cancer Development. Cancer Cell. 29: 354-366 (2016).CrossRefPubMedGoogle Scholar
  12. 12.
    Liu Y, Luo X, Deng J, Pan Y, Zhang L, Liang H. SMYD3 overexpression was a risk factor in the biological behavior and prognosis of gastric carcinoma. Tumour Biol. (2014).Google Scholar
  13. 13.
    Liu Y, Deng J, Luo X, Pan Y, Zhang L, Zhang R, Liang H. Overexpression of SMYD3 was associated with increased STAT3 activation in gastric cancer. Med Oncol. 32: 404 (2015).CrossRefPubMedGoogle Scholar
  14. 14.
    Liu Y, Liu H, Luo X, Deng J, Pan Y, Liang H. Overexpression of SMYD3 and matrix metalloproteinase-9 are associated with poor prognosis of patients with gastric cancer. Tumour Biol. 36: 4377-4386 (2015).CrossRefPubMedGoogle Scholar
  15. 15.
    Wang L, Wang QT, Liu YP, Dong QQ, Hu HJ, Miao Z, Li S, Liu Y, Zhou H, Zhang TC, Ma WJ, Luo XG. ATM Signaling Pathway Is Implicated in the SMYD3-mediated Proliferation and Migration of Gastric Cancer Cells. Journal of Gastric Cancer. 17: e33 (2017).CrossRefGoogle Scholar
  16. 16.
    Cock-Rada AM, Medjkane S, Janski N, Yousfi N, Perichon M, Chaussepied M, Chluba J, Langsley G, Weitzman JB. SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res. 72: 810-820 (2012).CrossRefPubMedGoogle Scholar
  17. 17.
    Liu C, Fang X, Ge Z, Jalink M, Kyo S, Bjorkholm M, Gruber A, Sjoberg J, Xu D. The telomerase reverse transcriptase (hTERT) gene is a direct target of the histone methyltransferase SMYD3. Cancer Res. 67: 2626-2631 (2007).CrossRefPubMedGoogle Scholar
  18. 18.
    Rose P, Huang Q, Ong CN, Whiteman M. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol. 209: 105-113 (2005).CrossRefPubMedGoogle Scholar
  19. 19.
    Mao L, Wang HD, Wang XL, Qiao L, Yin HX. Sulforaphane attenuates matrix metalloproteinase-9 expression following spinal cord injury in mice. Ann Clin Lab Sci. 40: 354-360 (2010).PubMedGoogle Scholar
  20. 20.
    Abbas A, Hall JA, Patterson WL, 3rd, Ho E, Hsu A, Al-Mulla F, Georgel PT. Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines. Biochem Cell Biol. 94: 71-81 (2016).CrossRefPubMedGoogle Scholar
  21. 21.
    Annabi B, Rojas-Sutterlin S, Laroche M, Lachambre MP, Moumdjian R, Beliveau R. The diet-derived sulforaphane inhibits matrix metalloproteinase-9-activated human brain microvascular endothelial cell migration and tubulogenesis. Mol Nutr Food Res. 52: 692-700 (2008).CrossRefPubMedGoogle Scholar
  22. 22.
    Lewinska A, Adamczyk-Grochala J, Deregowska A, Wnuk M. Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells. Theranostics. 7: 3461-3477 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zou X, Qu Z, Fang Y, Shi X, Ji Y. Endoplasmic reticulum stress mediates sulforaphane-induced apoptosis of HepG2 human hepatocellular carcinoma cells. Mol Med Rep. 15: 331–338 (2017).CrossRefPubMedGoogle Scholar
  24. 24.
    Liu KC, Shih TY, Kuo CL, Ma YS, Yang JL, Wu PP, Huang YP, Lai KC, Chung JG. Sulforaphane Induces Cell Death Through G2/M Phase Arrest andTriggers Apoptosis in HCT 116 Human Colon Cancer Cells. Am J Chin Med. 44(6):1289-1310 (2016).CrossRefPubMedGoogle Scholar
  25. 25.
    Kokotou MG, Revelou PK, Pappas C, Constantinou-Kokotou V. High resolution mass spectrometry studies of sulforaphane and indole-3-carbinol in broccoli. Food Chem. 237: 566-573(2017).CrossRefPubMedGoogle Scholar
  26. 26.
    Chen YJ, Wallig MA, Jeffery EH. Dietary Broccoli Lessens Development of Fatty Liver and Liver Cancer in Mice Given Diethylnitrosamine and Fed a Western or Control Diet. J Nutr. 146:542-550 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Komatsu S, Ichikawa D, Hirajima S, Nagata H, Nishimura Y, Kawaguchi T, Miyamae M, Okajima W, Ohashi T, Konishi H, Shiozaki A, Fujiwara H, Okamoto K, Tsuda H, Imoto I, Inazawa J, Otsuji E. Overexpression of SMYD2 contributes to malignant outcome in gastric cancer. Br J Cancer. 112: 357-364 (2015).CrossRefPubMedGoogle Scholar
  28. 28.
    Nagandla H, Lopez S, Yu W, Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1. Dev Biol. 410: 86-97 (2016).CrossRefPubMedGoogle Scholar
  29. 29.
    Zeng B, Li Z, Chen R, Guo N, Zhou J, Zhou Q, Lin Q, Cheng D, Liao Q, Zheng L, Gong Y. Epigenetic regulation of miR-124 by hepatitis C virus core protein promotes migration and invasion of intrahepatic cholangiocarcinoma cells by targeting SMYD3. FEBS Lett. 586: 3271-8 (2012).CrossRefPubMedGoogle Scholar
  30. 30.
    Wang X, Li Y, Dai Y, Liu Q, Ning S, Liu J, Shen Z, Zhu D, Jiang F, Zhang J, Li Z. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep. 6: 36796 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Luo XG, Zhang CL, Zhao WW, Liu ZP, Liu L, Mu A, Guo S, Wang N, Zhou H, Zhang TC. Histone methyltransferase SMYD3 promotes MRTF-A-mediated transactivation of MYL9 and migration of MCF-7 breast cancer cells. Cancer Lett. 344: 129-37 (2014).CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang C, Luo X, Liu L, Guo S, Zhao W, Mu A, Liu Z, Wang N, Zhou H, Zhang T. Myocardin-related transcription factor A is up-regulated by 17beta-estradiol and promotes migration of MCF-7 breast cancer cells via transactivation of MYL9 and CYR61. Acta Biochim Biophys Sin (Shanghai). 45: 921-7 (2013).CrossRefPubMedGoogle Scholar
  33. 33.
    Gilles L, Bluteau D, Boukour S, Chang Y, Zhang Y, Robert T, Dessen P, Debili N, Bernard OA, Vainchenker W, Raslova H. MAL/SRF complex is involved in platelet formation and megakaryocyte migration by regulating MYL9 (MLC2) and MMP9. Blood. 114: 4221-32 (2009)CrossRefPubMedGoogle Scholar
  34. 34.
    Wei J, Yu G, Shao G, Sun A, Chen M, Yang W, Lin Q. CYR61 (CCN1) is a metastatic biomarker of gastric cardia adenocarcinoma. Oncotarget. 7: 31067-3178 (2016).PubMedPubMedCentralGoogle Scholar
  35. 35.
    Yeger H, Perbal B. CCN family of proteins: critical modulators of the tumor cell microenvironment. J Cell Commun Signal. 10: 229-240 (2016).CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Huang YQ, Han ZD, Liang YX, Lin ZY, Ling XH, Fu X, Cai C, Bi XC, Dai QS, Chen JH, He HC, Chen YR, Jiang FN, Zhong WD. Decreased expression of myosin light chain MYL9 in stroma predicts malignant progression and poor biochemical recurrence-free survival in prostate cancer. Med Oncol. 31: 820 (2014).CrossRefPubMedGoogle Scholar
  37. 37.
    Park I, Han C, Jin S, Lee B, Choi H, Kwon JT, Kim D, Kim J, Lifirsu E, Park WJ, Park ZY, Kim DH, Cho C. Myosin regulatory light chains are required to maintain the stability of myosin II and cellular integrity. Biochem J. 434: 171-180 (2011).CrossRefPubMedGoogle Scholar
  38. 38.
    Hung CN, Huang HP, Wang CJ, Liu KL, Lii CK. Sulforaphane inhibits TNF-alpha-induced adhesion molecule expression through the Rho A/ROCK/NF-kappaB signaling pathway. J Med Food. 17: 1095-1102 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol. 11: 257-268 (2009).CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Food Nutrition and Safety & Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology) of the Ministry of EducationTianjinPeople’s Republic of China
  2. 2.Tianjin Key Lab of Industrial Microbiology, College of BiotechnologyTianjin University of Science and TechnologyTianjinPeople’s Republic of China
  3. 3.Department of Gastric Cancer, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina

Personalised recommendations