Advertisement

Food Science and Biotechnology

, Volume 27, Issue 4, pp 1111–1118 | Cite as

GC–MS based metabolomics study of fermented stipe of Sparassis crispa

  • Seung-Ho Seo
  • Seong-Eun Park
  • Eun-Ju Kim
  • Hong-Seok Son
Article

Abstract

GC–MS coupled with multivariate statistical analysis was performed to understand metabolites difference between pileus and stipe of Sparassis crispa (cauliflower mushroom). Metabolic changes of S. crispa after fermentation by different microorganisms were also investigated. PCA score plot showed a clear separation between pileus and stipe of S. crispa regardless of fermentation. However, OPLS-DA score plot showed clear separation among fermented S. crispa samples according to microbial strain used, indicating that both pileus and stipe fermented with the same strain showed similar pattern of metabolites. Fructose, lactic acid, citric acid, malic acid, and phosphoric acid were metabolites that contributed to the discrimination of fermented S. crispa samples. Results of this study provide novel insights into intrinsic characteristics of stipe of S. crispa which is cheaper than pileus as ingredient for alternative functional food.

Keywords

Metabolomics Sparassis crispa Stipe GC–MS Fermentation 

Notes

Acknowledgements

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Carvalho JCT, Perazzo FF, Machado L, Bereau D. Biologic activity and biotechnological development of natural products. BioMed Res. Int. Article ID 971745 (2013)Google Scholar
  2. 2.
    Choi JH, Lee HJ, Kim S. Purification and antithrombotic activity of wulfase, a fibrinolytic enzyme from the fruit bodies of the edible and medicinal mushroom Sparassis crispa Wulf. ex. Fr. Appl. Biochem. Microbiol. 52: 608–614 (2016)CrossRefGoogle Scholar
  3. 3.
    Ohno N, Harada T, Masuzawa S, Miura NN, Adachi Y, Nakajima M, Yadomae T. Antitumor activity and hematopoietic response of a b-glucan extracted from an edible and medicinal mushroom Sparassis crispa Wulf.: Fr.(Aphyllophoromycetideae). Int. J. Med. Mushrooms 4: 13–26 (2002)CrossRefGoogle Scholar
  4. 4.
    Harada T, Kawaminami H, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. Comparison of the Immunomodulating Activities of 1, 3-β-glucan Fractions from the Culinary-Medicinal Mushroom Sparassis crispa Wulf.: Fr.(Aphyllophoromycetideae). Int. J. Med. Mushrooms 8: 231–244 (2006)CrossRefGoogle Scholar
  5. 5.
    Yamamoto K, Kimura T, Sugitachi A, Matsuura N. Anti-angiogenic and anti-metastatic effects of β-1, 3-d-glucan purified from Hanabiratake, Sparassis crispa. Biol. Pharm. Bull. 32: 259–263 (2009)CrossRefPubMedGoogle Scholar
  6. 6.
    Chandrasekaran G, Kim GJ, Shin HJ. Purification and characterisation of an alkaliphilic esterase from a culinary medicinal mushroom, Sparassis crispa. Food Chem. 124: 1376–1381 (2011)CrossRefGoogle Scholar
  7. 7.
    Seo SH, Park SE, Moon YS, Lee YM, Na CS, Son HS. Component analysis and immuno-stimulating activity of Sparassis crispa stipe. Korean J. Food Sci. Technol. 48: 515–520 (2016)CrossRefGoogle Scholar
  8. 8.
    Kim EJ, Seo SH, Park SE, Kang MS, Son HS. Effects of fermented Sparassis crispa stipe extract supplemented diet on the immune responses of Philippines eel, Anguilla bicolor. J. Korean Soc. Food Sci. Nutr. 46: 1151–1157 (2017)Google Scholar
  9. 9.
    Hill D, Sugrue I, Arendt E, Hill C, Stanton C, Ross RP. Recent advances in microbial fermentation for dairy and health. F1000Res 6: 751 (2017).Google Scholar
  10. 10.
    Zhang Z, Lv G, Pan H, Fan L, Soccol CR, Pandey A. Production of powerful antioxidant supplements via solid-state fermentation of wheat (Triticum aestivum Linn.) by cordyceps militaris. Food Technol. Biotechnol. 50: 32–39 (2012)Google Scholar
  11. 11.
    Liu Y, Xie XX, Ibrahim SA, Khaskheli SG, Yang H, Wang YF, Huang W. Characterization of Lactobacillus pentosus as a starter culture for the fermentation of edible oyster mushrooms (Pleurotus spp.). LWT-Food Sci. Technol. 68: 21–26 (2016)Google Scholar
  12. 12.
    Zhang D, Zhang Y, Liu B, Jiang Y, Zhou Q, Wang J, Wang H, Xie J, Kuang Q. Effect of replacing fish meal with fermented mushroom bran hydrolysate on the growth, digestive enzyme activity, and antioxidant capacity of allogynogenetic crucian carp (Carassius auratus gibelio). Turk. J. Fish. Aquat. Sci. 17: 1039–1048 (2017)CrossRefGoogle Scholar
  13. 13.
    Jabłońska-Ryś E, Sławińska A, Szwajgier D. Effect of lactic acid fermentation on antioxidant properties and phenolic acid contents of oyster (Pleurotus ostreatus) and chanterelle (Cantharellus cibarius) mushrooms. Food Sci. Biotechnol. 25: 439–444 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yang HS, Choi YJ, Oh HH, Moon JS, Jung HK, Kim KJ, Choi BS, Lee JW, Huh CK. Antioxidative activity of mushroom water extracts fermented by lactic acid bacteria. J. Korean Soc. Food Sci. Nutr. 43: 80–85 (2014)CrossRefGoogle Scholar
  15. 15.
    Park SE, Seo SH, Moon YS, Lee YM, Na CS, Son HS. Antioxidant and immunological activities of Sparassis crispa fermented with Meyerozyma guilliermondii FM. J. Korean Soc. Food Sci. Nutr. 45: 1398–1405 (2016)CrossRefGoogle Scholar
  16. 16.
    More T, RoyChoudhury S, Gollapalli K, Patel SK, Gowda H, Chaudhury K, Rapole S. Metabolomics and its integration with systems biology: PSI 2014 conference panel discussion report. J. Proteomics 127: 73–79 (2015)CrossRefPubMedGoogle Scholar
  17. 17.
    Jonsson P, Gullberg J, Nordström A, Kusano M, Kowalczyk M, Sjöström M, Moritz T. A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal. Chem. 76: 1738–1745 (2004)CrossRefPubMedGoogle Scholar
  18. 18.
    Khakimov B, Mongi RJ, Sørensen KM, Ndabikunze BK, Chove BE, Engelsen SB. A comprehensive and comparative GC–MS metabolomics study of non-volatiles in Tanzanian grown mango, pineapple, jackfruit, baobab and tamarind fruits. Food Chem. 213: 691–699 (2016)CrossRefPubMedGoogle Scholar
  19. 19.
    Park SE, Yoo SA, Seo SH, Lee KI, Na CS, Son HS. GC–MS based metabolomics approach of Kimchi for the understanding of Lactobacillus plantarum fermentation characteristics. LWT-Food Sci. Technol. 68: 313–321 (2016)CrossRefGoogle Scholar
  20. 20.
    Jang GJ, Kim DW, Gu EJ, Song SH, Lee JI, Lee SB, Kim JH, Ham KS, Kim HJ. GC/MS-based metabolomic analysis of the radish water Kimchi, Dongchimi, with different salts. Food Sci. Biotechnol. 24: 1967–1972 (2015)CrossRefGoogle Scholar
  21. 21.
    Seo SH, Park SE, Yoo SA, Lee KI, Na CS, Son HS. Metabolite profiling of Makgeolli for the understanding of yeast fermentation characteristics during fermentation and aging. Process Biochem. 51: 1363–1373 (2016)CrossRefGoogle Scholar
  22. 22.
    Ponnusamy K, Lee S, Lee CH. Time-dependent correlation of the microbial community and the metabolomics of traditional barley nuruk starter fermentation. Biosci. Biotechnol. Biochem. 77: 683–690 (2013)CrossRefPubMedGoogle Scholar
  23. 23.
    Benkeblia N, Shinano T, Osaki M. Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GC–MS analysis. Metabolomics 3: 297–305 (2007)CrossRefGoogle Scholar
  24. 24.
    Park SE, Seo SH, Lee KI, Na CS, Son HS, Metabolite profiling of fermented ginseng extracts by gas chromatography mass spectrometry. J. Ginseng Res. 42: 57–67 (2018)CrossRefPubMedGoogle Scholar
  25. 25.
    Avenoza A, Busto JH, Canal N, Peregrina JM. Time course of the evolution of malic and lactic acids in the alcoholic and malolactic fermentation of grape must by quantitative 1H NMR (qHNMR) spectroscopy. J. Agric. Food Chem. 54: 4715–4720 (2006)CrossRefPubMedGoogle Scholar
  26. 26.
    Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, Geertman JM, van Dijken JP, Pronk JT, van Maris AJ. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl. Environ. Microbiol. 74: 2766–2777 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Guillaume C, Delobel P, Sablayrolles JM, Blondin B. Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3 allele enhances fructose fermentation. Appl. Environ. Microbiol. 73: 2432–2439 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Phan CW, Sabaratnam V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl. Microbiol. Biotechnol. 96: 863–873 (2012)CrossRefPubMedGoogle Scholar
  29. 29.
    Burton K, Noble R. The influence of flush number, bruising and storage temperature on mushroom quality. Postharvest Biol. Technol. 3: 39–47 (1993)CrossRefGoogle Scholar
  30. 30.
    Kimura T. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. Biomed Res. Int. Article ID 982317 (2013)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Korean MedicineDongshin UniversityNajuRepublic of Korea

Personalised recommendations