Food Science and Biotechnology

, Volume 27, Issue 2, pp 467–477 | Cite as

Antibiotic resistance, biochemical typing, and PFGE typing of Bifidobacterium strains commonly used in probiotic health foods

  • Feili Xu
  • Junping Wang
  • Yunchang Guo
  • Ping Fu
  • Huawei Zeng
  • Zhigang Li
  • Xiaoyan Pei
  • Xiumei Liu
  • Shuo WangEmail author


This study firstly analyzed the antibiotic resistance, biochemical typing, and pulsed-field gel electrophoresis typing of 45 Bifidobacterium strains commonly used in health foods. Most strains were resistant to antibiotics but their antibiotic resistance rates were not high: Fos (56.52%), TET (43.48%), CRO (21.74%), AMC (15.22%), GEN (13.04%), RIF (10.87%), CHL (8.7%), CTX (6.52%), VAN (4.35%), and ERY (4.35%). The 45 strains could be divided into 14 pulsed-field gel electrophoresis types, of which the strain numbers of six pulsed-field gel electrophoresis types were more than one. All the Bifidobacterium strains could be divided into nine types by API50CHL biochemical identification. The same species displayed same biochemical typings, expect for B. animalis. Furthermore, the results confirmed that the same pulsed-field gel electrophoresis-type strains had closer antibiotic resistance patterns, and the same biochemical-type strain also had similar antibiotic resistance patterns.


Bifidobacterium Antibiotic resistance Biochemical typing Pulsed-field gel electrophoresis Probiotic health foods 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Adams MR. Safety of industrial lactic and bacteria. J. Biotechnol. 68:171–178 (1999)CrossRefGoogle Scholar
  2. 2.
    Wright VON, Salminen S. Probiotics: established effects and open questions. Eur. J. Gastroenterol. Hepatol. 11:1195–1198 (1999)CrossRefGoogle Scholar
  3. 3.
    Chang L, Zhuo Y, Zhang K D, Jian PY, Xiao KG. Antibiotic resistance of probiotic strains of Lactic Acid bacteria isolated from marketed foods and drugs. Biomed. Environ. Sci. 22:401–412 (2009)CrossRefGoogle Scholar
  4. 4.
    Masco L, Hoored K, Brandt E, Swings J, Huys G. Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products. J. Antimicrob. Chemother. 58:85–94 (2006)CrossRefGoogle Scholar
  5. 5.
    Milazzo I, Speciale A, Musumeci R, Fazio D, Blandino G. Identification and antibiotic susceptibility of bacterial isolates from probiotic products available in Italy. New Microbiol. 29:281–291(2006)Google Scholar
  6. 6.
    Silbert S, Boyken L, Hollis RJ, Pfaller MA. Improving typeability of multiple bacterial species using pulsed-field gel electrophoresis and thiourea. Diagn. Microbiol. Infect. Dis. 47:619–621 (2003)CrossRefGoogle Scholar
  7. 7.
    Clinical and Laboratory Standards Institute (CLSI). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; Approved Guideline, CLSI document M100–S20. Wayne, PA: CLSI (2010)Google Scholar
  8. 8.
    Pulse-Net protocol sections PNL04Standard Operating Procedure for Pulsenet PFGE of Listeria Monocytogenes (2008)Google Scholar
  9. 9.
    Graves LM, Swaminathan B. PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis. Int. J. Food Microbiol. 65:55–62 (2001)CrossRefGoogle Scholar
  10. 10.
    Sanders ME, Akkermans LM, Haller D, Hammerman C, Heimbach J, Hörmannsperger G., Huys G., Levy DD, Lutgendorff F, Mack D, Phothirath P, Solano-Aguilar G, Vaughan E. Safety assessment of probiotics for human use. Gut. Microbes. 1:164–185(2010)CrossRefGoogle Scholar
  11. 11.
    Xu FL, Gong YC, Wang HX, Fu P, Zeng HW, Z, Liang ZG, Pei XY, Liu XM. PFGE genotyping and antibiotic resistance of Lactobacillus distributed strains in the fermented dairy products. Ann. Microbiol. 62:255–262(2012)CrossRefGoogle Scholar
  12. 12.
    Mattia A, Merker, R. Regulation of probiotic substances as ingredients in foods: premarket approval or “generally recognized as safe” notification. Clin. Infect. Dis. 46:115–118 (2008)CrossRefGoogle Scholar
  13. 13.
    Liaskovskiĭ TM, Podgorskiĭ, VS. Assessment of probiotics according to the international organizations (FAO/WHO). Mikrobiol. Z. 67: 104–112 (2005)Google Scholar
  14. 14.
    Reid G. The importance of guidelines in the development and application of probiotics. Food and Agricultural Organization of the United Nation and the WHO. Curr. Pharm. Des. 11:11–16 (2005)CrossRefGoogle Scholar
  15. 15.
    Dicks LM, Botes M. Probiotic lactic acid bacteria in the gastro-intestinal tract: health benefits, safety and mode of action. Benef. Microbes. 1:11–29 (2010)CrossRefGoogle Scholar
  16. 16.
    Liu C, Zhang ZY, Dong K, Yuan JP, Guo XK. Antibiotic resistance of probiotic strains of Lactic acid bacteria isolated from marketed foods and drugs. Biomed. Environ. Sci. 22: 401–412 (2009)CrossRefGoogle Scholar
  17. 17.
    Reed KD, Stemper ME, Shukla SK. Pulsed-field gel electrophoresis of MRSA. Methods. Mol. Biol. 391:59–69 (2007)CrossRefGoogle Scholar
  18. 18.
    Laplana LM., Cepero MA, Ruiz J, Zolezzi PC, Calvo MA, Erazo MC, Gómez-Lus R. Molecular typing of Staphylococcus aureus clinical isolates by pulsed-field gel electrophoresis, staphylococcal cassette chromosome mec type determination and dissemination of antibiotic resistance genes. Int. J. Antimicrob. Agents. 30:505–513 (2007)CrossRefGoogle Scholar
  19. 19.
    Xiao JZ, Takahashi S, Odamaki T, Yaeshima T, Iwatsuki K. Antibiotic susceptibility of Bifidobacterial strains distributed in the Japanese market. Biosci. Biotechnol. Biochem. 74:336–342 (2010)CrossRefGoogle Scholar
  20. 20.
    Zhou JS, Pillidge CJ, Gopal PK, Gill HS. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int. J. Food Microbiol. 98:211–217 (2005)CrossRefGoogle Scholar
  21. 21.
    Yazid AM, Ali AM, Shuhaimi M, Kalaivaani V, Rokiah MY, Reezal, A. Antimicrobial susceptibility of Bifidobacteria. Lett. Appl. Microbiol. 31:57–62 (2000)CrossRefGoogle Scholar
  22. 22.
    Moubareck C, Gavini F, Vaugien L, Butel MJ, Doucet-Populaire, F. Antimicrobial susceptibility of Bifidobacteria. J. Antimicrob. Chemother. 55:38–44 (2005)CrossRefGoogle Scholar
  23. 23.
    Poltavs’ka OA, Kovalenko NK. Antibiotic sensitivity of bifidobacteria isolated from different natural sources. Mikrobiol. Z. 67:32–39 (2005)Google Scholar
  24. 24.
    Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84:197–215(2000)CrossRefGoogle Scholar
  25. 25.
    Meile L, Blay G., Thierry A. Safety assessment of dairy microorganisms: Propionibacterium and Bifidobacterium. Int. J. Food Microbiol. 126:316–320 (2008)CrossRefGoogle Scholar
  26. 26.
    Yagüe GG, Martínez MC, Mora PB, Alonso MA, Gutiérrez MN, Martínez JA, Muñoz JL, Bellidob J, García R, Segovia MH. Molecular diversity of quinolone antibiotic resistance in genetically related clinical isolates of Staphylococcus aureus and susceptibility to newer quinolones. J. Antimicrob. Chemoth. 47:157–161 (2001)CrossRefGoogle Scholar
  27. 27.
    D’Aimmo MR, Modesto M, Biavati B. Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products. Int. J. Food Microbiol. 115:35–42 (2007)CrossRefGoogle Scholar
  28. 28.
    Giraffa G, Andrighetto C, Antonello C, Gatti M, Lazzi C, Marcazzan G, Lombardi A, Neviani, E. Genotypic and phenotypic diversity of Lactobacillus delbrueckii subsp. lactis strains of dairy origin. Int. J. Food Microbiol. 91:129–139 (2004)CrossRefGoogle Scholar
  29. 29.
    Bongiorno D, Campanile F, Mongelli G, Baldi MT, Provenzani R, Reali S, Russo C, Santagati M, Stefani S. DNA methylase modifications and other linezolid antibiotic resistance mutations in coagulase-negative staphylococci in Italy. J. Antimicrob. Chemother. 65:2336–2340 (2010)CrossRefGoogle Scholar
  30. 30.
    Bourgeois P, Passerini D, Coddeville M, Guellerin M, Daveran-Mingot ML, Ritzenthaler P. PFGE protocols to distinguish subspecies of Lactococcus lactis. Methods. Mol. Biol. 1301:213–224 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Feili Xu
    • 1
  • Junping Wang
    • 1
  • Yunchang Guo
    • 2
  • Ping Fu
    • 2
  • Huawei Zeng
    • 3
  • Zhigang Li
    • 2
  • Xiaoyan Pei
    • 2
  • Xiumei Liu
    • 2
  • Shuo Wang
    • 1
    Email author
  1. 1.Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and TechnologyMinistry of EducationTianjinChina
  2. 2.National Food Safety Risk Assessment CenterBeijingChina
  3. 3.Department of Bioengineering, College of Life SciencesHuaibei Normal UniversityHuaibeiChina

Personalised recommendations