Food Science and Biotechnology

, Volume 27, Issue 2, pp 411–415 | Cite as

Rapid physicochemical characterization of innovative fucoidan/fructan powders by ATR–FTIR

  • Gerardo Espinosa-Velázquez
  • Ana Mayela Ramos-de-la-Peña
  • Julio Montanez
  • Juan Carlos Contreras-Esquivel
Article
  • 55 Downloads

Abstract

Functional food has been highly demanded lately because of its benefits in counteracting diseases. Fucoidan and agave fructan are ingredients that enhance the growth of beneficial bacteria in the gut (prebiotics). This mixture has great potential to develop innovative products but it has never been explored before. Because of fucoidan is more expensive than agave fructan, the innovative proposed mixture is vulnerable to adulteration. This research was aimed to assess the accuracy of Fourier transform infrared spectroscopy with attenuated total reflectance (ATR–FTIR) coupled with chemometrics to identify and predict concentration of both polysaccharides in powder mixtures (0–100%). Absorption bands at 1240–1255 and 836–840 cm−1 were attributed to fucoidan and a strong peak at ~ 936 cm−1 confirmed the fructan presence. Peak areas were best fitted into linear models (\({\text{R}}_{\text{adj}}^{2}\) ≥ 0.92, RMSE ≤ 3.54%). This achievement may be useful to certificate ingredients contained in fucoidan–fructan mixtures, preventing adulteration.

Keywords

Fructan Sulfated polysaccharide Undaria pinnatifida Chemometrics 

Notes

Acknowledgements

G. Espinosa-Velázquez received a scholarship for his graduate degree from the National Council of Science and Technology (CONACYT, Mexico).

References

  1. 1.
    Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA), Servicio de Información Agroalimentaria y Pesquera (SAP). 83 (2016)Google Scholar
  2. 2.
    Cedeño M. Tequila production. Crit. Rev. Biotechnol. 15: 1–11 (1995)CrossRefGoogle Scholar
  3. 3.
    Lopez MG, Mancilla-Margalli NA, Mendoza-Diaz G. Molecular structures of fructans from Agave tequilana Weber var. azul. J. Agr. Food Chem. 51: 7835–7840 (2003)CrossRefGoogle Scholar
  4. 4.
    Santiago-Garcia PA, Mellado-Mojica E, Leon-Martinez FM, Lopez MG. Evaluation of Agave angustifolia fructans as fat replacer in the cookies manufacture. LWT Food Sci. Technol. 77: 100–109 (2017)CrossRefGoogle Scholar
  5. 5.
    Espinosa-Andrews H, Urias-Silva JE. Thermal properties of agave fructans (Agave tequilana Weber var. Azul). Carbohyd. Polym. 87: 2671–2676 (2012)Google Scholar
  6. 6.
    Lu KY, Li R, Hsu CH, Lin CW, Chou SC, Tsai ML, Mi FL. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohyd. Polym. 165: 410–420 (2017)CrossRefGoogle Scholar
  7. 7.
    Shang Q, Song G, Zhang M, Shi J, Xu C, Hao J, Li G, Yu G. Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice. J. Funct. Foods. 28: 138–146 (2017)CrossRefGoogle Scholar
  8. 8.
    Vo T, Kim S. Fucoidan as a natural bioactive ingredient for functional foods. J. Funct. Foods. 5: 16–27 (2013)CrossRefGoogle Scholar
  9. 9.
    Chua EG, Verbrugghe P, Tay CY. Fucoidans disrupt adherence of helicobacter pylori to AGS cells in vitro. Evidence-Based Complementary and Alternative Medicine. 1–6 (2015)Google Scholar
  10. 10.
    SciFinder®. Chemical Abstracts Service, Columbus, OH, USA. (2017)Google Scholar
  11. 11.
    Hudson A. Food incidents: lessons from the past and anticipating the future. New Food. 5 (2016)Google Scholar
  12. 12.
    Rodriguez-Saona LE, Allendorf ME. Use of FTIR for rapid authentication and detection of adulteration of food. Annual Reviews. 2: 467–483 (2011)Google Scholar
  13. 13.
    Contreras-Esquivel JC, Espinoza-Pérez JD, Montanez JC, Charles-Rodríguez AV, Renovato J, Aguilar CN, Rodríguez-Herrera R, Wicker L. Extraction and characterization of pectin from novel sources. pp. 215–229. In: Advances in Biopolymers. Fishman ML, Qi PX, Wicker L (eds). American Chemical Society, Washington, DC, USA (2006)Google Scholar
  14. 14.
    Pielesz A, Biniaś W. Cellulose acetate membrane electrophoresis and FTIR spectroscopy as methods of identifying a fucoidan in Fucus vesiculosus Linnaeus. Carbohyd. Res. 345: 2676–2682 (2010)CrossRefGoogle Scholar
  15. 15.
    Cozzolino D, Roumeliotis S, Eglinton J. Feasibility study on the use of attenuated total reflectance MIR spectroscopy to measure the fructan content in barley. Anal. Methods. 6: 7710–7715 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Gerardo Espinosa-Velázquez
    • 1
  • Ana Mayela Ramos-de-la-Peña
    • 2
  • Julio Montanez
    • 1
  • Juan Carlos Contreras-Esquivel
    • 1
    • 3
  1. 1.Laboratory of Applied Glycobiotechnology, Food Research Department, School of ChemistryUniversidad Autonoma de CoahuilaSaltillo CityMexico
  2. 2.Centro de Biotecnología-FEMSATecnológico de MonterreyMonterreyMexico
  3. 3.Research and Development CenterCoyotefoods Biopolymer and Biotechnology Co.Saltillo CityMexico

Personalised recommendations