Advertisement

Food Science and Biotechnology

, Volume 26, Issue 6, pp 1763–1772 | Cite as

Modeling the release of antimicrobial agents (thymol and carvacrol) from two different encapsulation materials

  • Pablo A. Ulloa
  • Abel Guarda
  • Ximena Valenzuela
  • Javiera F. Rubilar
  • María J. Galotto
Article

Abstract

The release of microencapsulated natural antimicrobial (AM) agents (thymol and carvacrol) from two encapsulating matrixes [maltodextrin (MD) and soy protein (SP)] were evaluated for possible use in food packaging coatings. Microcapsules were prepared by oil-in-water (O/W) emulsions at different concentrations (10, 20% for MD and 2, 5% for SP). High encapsulation efficiency ranged from 96 to 99.95% for MD and 93.1 to 100% for SP, with average microcapsule diameters that ranged from 17 to 27.5 and 18.8 to 38 µm, respectively. The release rate with 20% MD-thymol [20MD-T] was faster than with 10% MD-thymol [10MD-T]. Similar results were obtained for carvacrol with the same concentration of MD. Korsmeyer–Peppas and Weibull mathematical models were successfully fitted to the release of the AM agents, describing the Fickian diffusion release of the components. Different release rates were obtained as a function of the chemical nature of the encapsulation material and its concentration.

Keywords

Release antimicrobial agent Thymol Carvacrol Microencapsulation 

Notes

Acknowledgements

The authors thank the Programa de Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia (Project CEDENNA FB0807). Rubilar gratefully acknowledges the financial support of the Fondecyt-Postdoctoral #3140349 Project and the INNOVA CORFO Project 13IDL1-18281 and DIPEI of the PUC.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Rubilar JF, Cruz RMS, Silva HD, Vicente AA, Khmelinskii I, Vieira MC. Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. J Food Eng. 115: 466-474 (2013).CrossRefGoogle Scholar
  2. 2.
    Brody AL, Strupinsky ER, Kline LR. 1st ed. Active packaging for food applications. CRC Press, Inc., Boca Raton, FL, USA (2001).CrossRefGoogle Scholar
  3. 3.
    Cerisuelo JP, Muriel-Galet V, Bermúdez JM, Aucejo S, Catalá R, Gavara R, Hernández-Muñoz P. Mathematical model to describe the release of an antimicrobial agent from an active package constituted by carvacrol in a hydrophilic EVOH coating on a PP film. J. Food Eng. 110: 26–37 (2012).CrossRefGoogle Scholar
  4. 4.
    Almenar E, Catalá R, Hernández P, Gavara R. Optimization of an active package for wild strawberry based on the release of 2-nonanone. Food Sci. Tech. 42: 587–593 (2008).Google Scholar
  5. 5.
    Imran M, Revol-Junelles AM, Martyn A, Tehrany A, Jacquot M, Linder M, Desorby S. Active food packaging evolution: transformation from micro- to nanotechnology. Cri. Rev. Food Sci. Nutr. 50: 799–821 (2010).CrossRefGoogle Scholar
  6. 6.
    Ramos M, Jimenez A, Peltzer M, Garrigós MC. Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J. Food Eng. 109: 513–519 (2012).CrossRefGoogle Scholar
  7. 7.
    Gutierrez J, Barry-Ryan C, Bourke P. Antimicrobial activity of plant essential oils using food model media: efficacy, synergistic potential and interactions with food components. Food Microbiol. 26: 142–150 (2009).CrossRefGoogle Scholar
  8. 8.
    Rubilar JF, Cruz RMS, Khmelinskii I, Vieira MC. Effect of antioxidant and optimal antimicrobial mixtures of carvacrol, grape seed extract and chitosan on different spoilage microorganisms and their application as coating on different food matrices. Int. J Food Studies 2: 22–38 (2013).CrossRefGoogle Scholar
  9. 9.
    Daferera DJ, Ziogas BN, Polissiou MC. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subs. Michiganensis. Crop Prot. 22: 39–44 (2003).CrossRefGoogle Scholar
  10. 10.
    Cao-Hoang L, Grégorie L, Chaine A, Wache Y. Importance and efficiency of in-depth antimicrobial activity for the control of listeria development with nisin-incorporated sodium caseinate films. Food Control, 21, 1227–1233 (2010).CrossRefGoogle Scholar
  11. 11.
    Guarda A, Rubilar J, Miltz J, Galotto MJ. The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 146: 144–150 (2011).CrossRefGoogle Scholar
  12. 12.
    Ramos M, Beltrán A, Peltzer M, Valente AJM, Garrigós MC. Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT-Food Sci. Technol. 58: 470–477 (2014).CrossRefGoogle Scholar
  13. 13.
    Sivropoulou A, Papanikolaou E, Nikolaou C, Kokkini S, Lanaras T, Arsenakis M. Antimicrobial and cytotoxic activities of Origanum essential oils. J Agric. Food Chem. 44: 1202–1205 (1996).CrossRefGoogle Scholar
  14. 14.
    Mohammadi A, Jafari SM, Assadpour E, Esfanjani AF. Nano-encapsulation of olive leaf phenolic compounds through WPC-pectin complexes and evaluation their release rate. Int. J Biol Macromolec. 82: 816–822 (2016).CrossRefGoogle Scholar
  15. 15.
    King AH. Encapsulation of food ingredients. pp. 26–39. In: Encapsulation and controlled release of food ingredients. Risch S and Reineccius GE. (eds.). Symposium series 590, American Chemical Society, Washington DC, (1995).Google Scholar
  16. 16.
    Campos CA, Gerschenson LN, Flores SK. Development of edible films and coatings with antimicrobial activity. Food Bioprocess Tech. 4 (6): 849–875 (2011).CrossRefGoogle Scholar
  17. 17.
    Barbosa-Pereira L, Aurrekoetxea GP, Angulo I, Paseiro-Losada P, Cruz JM. Development of new active packaging films coated with natural phenolic compounds to improve the oxidative stability of beef. Meat Sci. 97:249–254 (2014).CrossRefGoogle Scholar
  18. 18.
    Šegvić-Klarić M, Kosalec I, Mastelić J, Piecková E, Pepeljnak S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 44: 36–42 (2006).Google Scholar
  19. 19.
    Yang J, Xiao J, Ding L. An investigation into the application of konjac glucomannan as a flavour encapsulant. Eur. Food Res. Technol. 229: 467–474 (2009).CrossRefGoogle Scholar
  20. 20.
    Buranasuksombat U, Kwon YJK, Turner M, Bhandari B. Influence of emulsion droplet size on atimicrobial properties. Food Sci. Biotechnol. 20(3): 793–800 (2011).CrossRefGoogle Scholar
  21. 21.
    Maji TK, Hussain MR. Microencapsulation of Zanthoxylum limonella oil (z/o) in genipin crosslinked chitosan-gelatin complex for mosquito repellent application. J Appl. Polymer Sci. 11: 779–785 (2009).Google Scholar
  22. 22.
    Jun-Xia X, Hai-yan Y, Jian Y. Microencapsulation of sweet orange oil by complex coacervation with soybean protein isolate/gum Arabic. Food Chem. 125: 1267–1272 (2011).CrossRefGoogle Scholar
  23. 23.
    Dokic-Baucal L, Dokic P, Jakovljevic J. Influence of different maltodextrins on properties of O/W emulsions. Food Hydrocolloid. 18: 233–239 (2004).CrossRefGoogle Scholar
  24. 24.
    Pérez-Pérez C, Regalado-González C, Rodríguez-Rodríguez CA, Barbosa-Rodriguez JR, Villaseñor-Ortega F. Incorporation of antimicrobial agents in food packaging films and coatings. In: Advances in Agricultural and Food Biotechnology. Guevara-González RG. And Torres-Pacheco I. (eds). Research Signpost. Kerala, India (2006).Google Scholar
  25. 25.
    Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 40: 1107–1121 (2007).CrossRefGoogle Scholar
  26. 26.
    Del Nobile MA, Conte A, Incoronato AL, Panza O. Antimicrobial efficacy and release kinetics of thymol from zein films. J Food Eng. 89: 57–63 (2008).CrossRefGoogle Scholar
  27. 27.
    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int. J Pharm. 15: 25–35 (1983).CrossRefGoogle Scholar
  28. 28.
    Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modelling on drug release from controlled drug delivery systems. Acta Pol. Pharm– Drug Research, 67 (3): 217–223 (2010).Google Scholar
  29. 29.
    Boriwanwattanarak P, Ingkaninan K, Khorana N, Viyoch J. Development of curcuminoids hydrogel patch using chitosan from various sources as controlled-release matrix. Int. J. Cosmet. Sci. 30: 205–218 (2008).CrossRefGoogle Scholar
  30. 30.
    Estevinho BN, Rocha F, Santos L, Alves A. Microencapsulation with chitosan by spray drying for industry applications – a review. Trends Food Sci. Tech. 31 (2): 138–155 (2013).CrossRefGoogle Scholar
  31. 31.
    Jose S, Fangueiro JF, Smitha J, Cinu TA, Chacko AJ, Premaletha K, Souto EB. Predictive modeling of insuline release profile from cross-linked chitosan microspheres. Eur. J Med. Chem. 60: 249–253 (2013).CrossRefGoogle Scholar
  32. 32.
    Van Boekel MA. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int. J. Food Microbiol. 74, 139–159 (2002).CrossRefGoogle Scholar
  33. 33.
    Ayala-Zavala F, Gonzalez-Aguilar G. Optimizing the use of garlic oil as antimicrobial agent in fresh-cut tomato through a controlled release system. J. Food Sci. 75 (7): M398-M405 (2010).CrossRefGoogle Scholar
  34. 34.
    Cosentino S, Tuberoso CI, Pisano B, Satta M, Mascia V, Arzedi E, Palmas F. In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett. Appl. Microbiol. 29: 130–135 (1999).CrossRefGoogle Scholar
  35. 35.
    Delgado B, Fernández P, Palop A, Periago P. Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distributions. Food Microbiol. 21: 327–334 (2004).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Pablo A. Ulloa
    • 1
  • Abel Guarda
    • 2
  • Ximena Valenzuela
    • 2
  • Javiera F. Rubilar
    • 3
  • María J. Galotto
    • 2
  1. 1.Pontificia Universidad Católica de Valparaíso, Escuela de AlimentosValparaisoChile
  2. 2.Food Packaging Laboratory (LABEN-Chile), Food Science and Technology Department, Center for the Development of Nanoscience and Nanotechnology (CEDENNA)Universidad de Santiago de ChileSantiagoChile
  3. 3.Departament of Chemical and Bioprocess EngineeringPontificia Universidad Católica de ChileMacul, SantiagoChile

Personalised recommendations