Advertisement

Food Science and Biotechnology

, Volume 26, Issue 5, pp 1379–1389 | Cite as

Compositional analyses of diverse phytochemicals and polar metabolites from different-colored potato (Solanum tubersum L.) tubers

  • Wonhui Lee
  • Yunsoo Yeo
  • Seonwoo Oh
  • Kwang-Soo Cho
  • Young-Eun Park
  • Soon Ki Park
  • Si Myung Lee
  • Hyun Suk Cho
  • Soo-Yun Park
Article

Abstract

Lipophilic bioactive compounds and hydrophilic primary metabolites from potato (solanum tubersum L.) tubers with different-colored flesh (white-, yellow-, red-, and purple) were characterized. The carotenoid content was relatively higher in red-colored potatoes, in which lutein was most plentiful. Among the other lipophilic compounds analyzed, including policosanols, tocopherols, and phytosterols, octacosanol was measured in the largest amount, followed by β-sitosterol, irrespective of color variations. Forty-three hydrophilics consisting of amino acids, organic acids, sugars, and sugar alcohols and 18 lipophilics were subjected to data-mining processes. The results of multivariate statistical analyses clearly distincted the different varieties and separated red-fleshed potatoes from other color-fleshed potatoes according to abundance of amino acids, sugars, and carotenoids. This study confirmed the metabolic association-related biochemical pathway between metabolite characteristic and color differences in potato tubers. These results can facilitate understanding the metabolic differences among diverse colored potatoes and provide fruitful information for genetic engineering of potato cultivars.

Keywords

Metabolomics Multivariate analysis Phytochemicals Potato Primary metabolites 

Notes

Acknowledgements

This study was supported by the National Institute of Agricultural Sciences (Code PJ011752), Rural Development Administration, Republic of Korea.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Prakash D, Gupta KR. The antioxidant phytochemicals of nutraceutical importance. Open Nutraceuticals J. 2: 20–35 (2009)CrossRefGoogle Scholar
  2. 2.
    Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 113: 71–88 (2002)CrossRefGoogle Scholar
  3. 3.
    Jansen G, Flamme W, Schüler K, Vandrey M. Tuber and starch quality of wild and cultivated potato species and cultivars. Potato Res. 44: 137–146 (2001)CrossRefGoogle Scholar
  4. 4.
    Camire ME, Kubow S, Donnelly DJ. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 49: 823–840 (2009)CrossRefGoogle Scholar
  5. 5.
    Friedman M. Chemistry, biochemistry, and dietary role of potato polyphenols. A review. J. Agric. Food Chem. 45: 1523–1540 (1997)CrossRefGoogle Scholar
  6. 6.
    Fernandez-Orozco R, Gallardo-Guerrero L, Hornero-Méndez D. Carotenoid profiling in tubers of different potato (Solanum sp) cultivars: accumulation of carotenoids mediated by xanthophyll esterification. Food Chem. 141: 2864–2872 (2013)CrossRefGoogle Scholar
  7. 7.
    Kim JK, Park SY, Lim SH, Yeo Y, Cho HS, Ha SH. Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. J. Cereal Sci. 57: 14–20 (2013)CrossRefGoogle Scholar
  8. 8.
    Park SY, Lee SY, Yang JW, Lee JS, Oh SD, Oh S, Lee SM, Lim MH, Park SK, Jang JS, Cho HS, Yeo Y. Comparative analysis of phytochemicals and polar metabolites from colored sweet potato (Ipomoea batatas L.) tubers. Food Sci. Biotechnol. 25: 283–291 (2016)CrossRefGoogle Scholar
  9. 9.
    Kim TJ, Lee KB, Baek SA, Choi J, Ha SH, Lim SH, Park SY, Yeo Y, Park SU, Kim JK. Determination of lipophilic metabolites for species discrimination and quality assessment of nine leafy vegetables. J. Korean Soc. Appl. Biol. Chem. 58: 909–918 (2015)CrossRefGoogle Scholar
  10. 10.
    Park SY, Choi SR, Lim SH, Yeo Y, Kweon SJ, Bae YS, Kim KW, Im KH, Ahn SK, Ha SH, Park SU, Kim JK. Identification and quantification of carotenoids in paprika fruits and cabbage, kale, and lettuce leaves. J. Korean Soc. Appl. Biol. Chem. 57: 355–358 (2014)CrossRefGoogle Scholar
  11. 11.
    Lu S, Li L. Carotenoid metabolism: biosynthesis, regulation, and beyond. J. Integr. Plant Biol. 50: 778–785 (2008)CrossRefGoogle Scholar
  12. 12.
    Rao AV, Rao LG. Carotenoids and human health. Pharmacol. Res. 55: 207–216 (2007)CrossRefGoogle Scholar
  13. 13.
    Zhou X, McQuinn R, Fei Z, Wolters AM, VAN Eck J, Brown C, Giovannoni JJ, Li L. Regulatory control of high levels of carotenoid accumulation in potato tubers. Plant Cell. Environ. 34: 1020–1030 (2011)CrossRefGoogle Scholar
  14. 14.
    Ahmed SS, Lott MN, Marcus DM. The macular xanthophylls. Surv. Ophthalmol. 50: 183–193 (2005)CrossRefGoogle Scholar
  15. 15.
    Morris WL, Ducreux L, Griffiths DW, Stewart D, Davies HV, Taylor MA. Carotenogenesis during tuber development and storage in potato. J. Exp. Bot. 55: 975–982 (2004)CrossRefGoogle Scholar
  16. 16.
    Valcarcel J, Reilly K, Gaffney M, O’Brien N. Total carotenoids and L-ascorbic acid content in 60 varieties of potato (Solanum tuberosum L.) grown in Ireland. Potato Res. 58: 29–41 (2015)CrossRefGoogle Scholar
  17. 17.
    Kim JK, Park SY, Na JK, Seong ES, Yu CY. Metabolite profiling based on lipophilc compounds for quality assessment of perilla (Perilla frutescens) cultivars. J. Agric. Food Chem. 60: 2257–2263 (2012)CrossRefGoogle Scholar
  18. 18.
    Irmak S, Dunford NT. Policosanol contents and compositions of wheat varieties. J. Agric. Food Chem. 53: 5583–5586 (2005)CrossRefGoogle Scholar
  19. 19.
    Arruzazabala ML, Molina V, Mas R, Fernández L, Carbajal D, Valdés S, Castaño G. Antiplatelet effects of policosanol (20 and 40 mg/day) in healthy volunteers and dyslipidaemic patients. Clin. Exp. Pharmacol. Physiol. 29: 891–897 (2002)CrossRefGoogle Scholar
  20. 20.
    Haffner SM. Clinical relevance of the oxidative stress concept. Metabolism 49: 30–34 (2000)CrossRefGoogle Scholar
  21. 21.
    Kim H, Park S, Han DS, Park T. Octacosanol supplementation increases running endurance time and improves biochemical parameters after exhaustion in trained rats. J. Med. Food 6: 345–351 (2003)CrossRefGoogle Scholar
  22. 22.
    Oliaro-Bosso S, Calcio Gaudino E, Mantegna S, Giraudo E, Meda C, Viola F, Cravotto G. Regulation of HMGCoA reductase activity by policosanol and octacosadienol, a new synthetic analogue of octacosanol. Lipids 44: 907–916 (2009)CrossRefGoogle Scholar
  23. 23.
    Long L, Wu S, Sun J, Wang J, Zhang H, Qi G. Effects of octacosanol extracted from rice bran on blood hormone levels and gene expressions of glucose transporter protein-4 and adenosine monophosphate protein kinase in weaning piglets. Anim. Nutr. 1: 293–298 (2015)CrossRefGoogle Scholar
  24. 24.
    Park SY, Park WT, Park YC, Ju JI, Park SU, Kim JK. Metabolomics for the quality assessment of Lycium chinense fruits. Biosci. Biotechnol. Biochem. 76: 2188–2194 (2012)CrossRefGoogle Scholar
  25. 25.
    Kim YB, Park SY, Park CH, Park WT, Kim SJ, Ha SH, Arasu MV, Al-Dhabi NA, Kim JK, Park SU. Metabolomics of differently colored Gladiolus cultivars. Appl. Biol. Chem. 59: 597–607 (2016)CrossRefGoogle Scholar
  26. 26.
    Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23: 131–142 (2000)CrossRefGoogle Scholar
  27. 27.
    Ramadan Z, Jacobs D, Grigorov M, Kochhar S. Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta 68: 1683–1691 (2006)CrossRefGoogle Scholar
  28. 28.
    Barker M, Rayens W. Partial least squares for discrimination. J. Chemometrics 17: 166–173 (2003)CrossRefGoogle Scholar
  29. 29.
    Worley B, Powers R. Multivariate analysis in metabolomics. Curr. Metabolomics 1: 92–107 (2013)Google Scholar
  30. 30.
    Madala NE, Piater LA, Steenkamp PA, Dubery IA. Multivariate statistical models of metabolomics data reveals different metabolite distribution patterns in isonitrosoacetophenone-elicited Nicotiana tabacum and Sorghum bicolor cells. Springerplus 3: 254 (2014)CrossRefGoogle Scholar
  31. 31.
    Park SY, Lim SH, Ha SH, Yeo Y, Park WT, Kwon DY, Park SU, Kim JK. Metabolite profiling approach reveals the interface of primary and secondary metabolism in colored cauliflowers (Brassica oleracea L. ssp. botrytis). J. Agric. Food Chem. 61: 6999–7007 (2013)CrossRefGoogle Scholar
  32. 32.
    Zhang L, Ma G, Kato M, Yamawaki K, Takagi T, Kiriiwa Y, Ikoma Y, Matsumoto H, Yoshioka T, Nesumi H. Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro. J. Exp. Bot. 63: 871–886 (2012)CrossRefGoogle Scholar
  33. 33.
    Camacho D, Fuente A, Mendes P. The origin of correlations in metabolomics data. Metabolomics 1: 53–63 (2005)CrossRefGoogle Scholar
  34. 34.
    Carreno-Quintero N, Acharjee A, Maliepaard C, Bachem CW, Mumm R, Bouwmeester H, Visser RG, Keurentjes JJ. Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary metabolism and potato tuber quality. Plant Physiol. 158: 1306–1318 (2012)CrossRefGoogle Scholar
  35. 35.
    Dobson G, Shepherd T, Verrall SR, Conner S, McNicol JW, Ramsay G, Shepherd LVT Davies HV, Stewart D. Phytochemical diversity in tubers of potato cultivars and landraces using a GC–MS metabolomics approach. J. Agric. Food Chem. 56: 10280–10291 (2008)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Wonhui Lee
    • 1
  • Yunsoo Yeo
    • 1
  • Seonwoo Oh
    • 1
  • Kwang-Soo Cho
    • 2
  • Young-Eun Park
    • 2
  • Soon Ki Park
    • 3
  • Si Myung Lee
    • 1
  • Hyun Suk Cho
    • 1
  • Soo-Yun Park
    • 1
  1. 1.National Institute of Agricultural SciencesRural Development AdministrationJeonjuKorea
  2. 2.National Institute of Crop ScienceRural Development AdministrationPyeongchangKorea
  3. 3.College of Agriculture and Life SciencesKyungpook National UniversityDaeguKorea

Personalised recommendations