Advertisement

Food Science and Biotechnology

, Volume 26, Issue 4, pp 993–1001 | Cite as

Comparison of physicochemical pretreatments of banana peels for bioethanol production

  • Sócrates Palacios
  • Héctor A. Ruiz
  • Rodolfo Ramos-Gonzalez
  • José Martínez
  • Elda Segura
  • Miguel Aguilar
  • Antonio Aguilera
  • Georgina Michelena
  • Cristóbal Aguilar
  • Anna IlyinaEmail author
Article

Abstract

Pretreatments with different concentrations of sulfuric acid (0, 0.5, and 1% v/v) and temperatures (28 and 121 °C at 103 kPa in an autoclave) were performed on banana peels (BP) milled by mechanical grinding and grinding in a blender as well as without grinding. Cellulose, hemicellulose, lignin, ash, and total and reducing sugar contents were evaluated. The highest yields of cellulose enzymatic hydrolysis (99%) were achieved with liquefied autoclaved BP treated with 0.5 and 1% acid after 48 h of hydrolysis. Ethanol production by Kluyveromyces marxianus fermentation was assayed using hydrolyzed BP at 10, 15, and 20% (w/w). The highest ethanol level (21 g/L) was reached after 24 h of fermentation with 20% (w/w) BP. Kinetics of the consumption of reducing sugars under this fermentation condition demonstrates the presence of a lag period (about 8 h). Thus, BP are a good source for ethanol production.

Keywords

Banana peel Physicochemical pretreatment Enzymatic hydrolysis Ethanol production 

Notes

Acknowledgements

Authors would thank to the Mexican National Council of Science and Technology (CONACYT) for the financial support of the project PDCPN 2013-01-213844, Ph.D. scholarship, and for the financial support under the program “Cátedras-CONACyT” (Researcher No. 2498).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Oberoi HS, Vadlani PV, Saida L, Bansal S, Hughes JD. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process. Waste Manage. 31: 1576–1584 (2011)CrossRefGoogle Scholar
  2. 2.
    Palacios-Ponce S, Ilyina A, Ramos-González R, Ruiz HA, Martínez-Hernández JL, Segura-Ceniceros EP, Aguilar MA, Sánchez O, Aguilar CN. Bioproducts obtained from the bioprocessing of the banana peel waste: an Overview. In: Applied Chemistry and Chemical Engineering. Vol. 5. Research Methodologies in Modern Chemistry and Applied Science. Part II - 10. Eds: Haghi AK, Faria Ribeiro AC, Pogliani L, Balköse D, Francisco Torrens F, Omari V, Mukbaniani OV. CRC Press. Taylor and Francis Group. India. (2017) (in Press)Google Scholar
  3. 3.
    Nagarajaiah SB, Prakash J. Chemical composition and antioxidant potential of peels from three varieties of banana. As. J. Food Ag-Ind. 4: 31–46 (2011)Google Scholar
  4. 4.
    Souza O, Schulz MA, Fischer GAA, Wagner TM, Sellin N. Energia alternativa de biomassa: Bioetanol a partir de casca e polpa de banana. Rev. Bras. Eng. Agr. Ambient. 16: 915–921 (2012)CrossRefGoogle Scholar
  5. 5.
    Velásquez-Arredondo HI, Ruiz-Colorado AA, De Oliveira junior S. Ethanol production process from banana fruit and its lignocellulosic residues: Energy Analysis. Energy. 35: 3081–3087 (2010)CrossRefGoogle Scholar
  6. 6.
    Dhabekar A, Chandak A. Utilization of banana peels and beet waste for alcohol production. Asiatic. J. Biotechnol. Res. 1: 8–13 (2010)Google Scholar
  7. 7.
    Clarke WP, Radnidge P, Lai TE, Jensen PD, Hardin MT. Digestion of waste bananas to generate energy in Australia. Waste Manage. 28: 527–533 (2008)CrossRefGoogle Scholar
  8. 8.
    Ilori MO, Adebusoye SA, Iawal AK, Awotiwon OA. Production of biogas from banana and plantain peels. Adv. Environ. Biol. 1: 33–38 (2007)Google Scholar
  9. 9.
    Bardiya N, Somayaji D, Khanna S. Biomethanation of banana peel and pineapple waste. Bioresour. Technol. 58: 73–76 (1996)CrossRefGoogle Scholar
  10. 10.
    Gunaseelan VN. Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenerg. 26: 389–399 (2004)CrossRefGoogle Scholar
  11. 11.
    Pérez J, Muñoz-Dorado J, De la Rubia T, Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5: 53–63 (2002)CrossRefGoogle Scholar
  12. 12.
    Ovando-Chacó SL, Waliszewski KN. Commercial cellulases preparations and their applications in extractives processes. Universidad y Ciencia 21: 111–120 (2005)Google Scholar
  13. 13.
    Carmen S. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27: 185–194 (2009)CrossRefGoogle Scholar
  14. 14.
    Badui DS. Hidratos de carbono. 107-113. In: Química de los alimentos. Ed: Duarte EQ. Cuarta Edición. Pearson Educación. México (2006)Google Scholar
  15. 15.
    Sharma N, Kalra KL, Oberoi H, Bansal S. Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation. Indian J. Microbiol. 47 (4): 310–316 (2007)CrossRefGoogle Scholar
  16. 16.
    Itelima J, Onwuliri E, I. O, Oforji S. Bio-Ethanol Production from Banana, Plantain and Pineapple Peels by Simultaneous Saccharification and Fermentation Process. Int. J. Environ. Sci. Dev. 4 (2): 213–216 (2013)Google Scholar
  17. 17.
    Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100 (1): 10–18 (2009)CrossRefGoogle Scholar
  18. 18.
    Happi Emaga T, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M. Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem. 103 (2): 590–600 (2007)CrossRefGoogle Scholar
  19. 19.
    Happi Emaga T, Robert C, Ronkart SN, Wathelet B, Paquot M. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties. Bioresour. Technol. 99 (10): 4346–4354 (2008)CrossRefGoogle Scholar
  20. 20.
    Oberoi HS, Sandhu SK, Vadlani PV. Statistical optimization of hydrolysis process for banana peels using cellulolytic and pectinolytic enzymes. Food Bioprod. Process. 90 (2): 257–265 (2012)CrossRefGoogle Scholar
  21. 21.
    King BC, Donnelly MK, Bergstrom GC, Walker LP, Gibson DM. An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnol. Bioeng. 102 (4): 1033–1044 (2009)CrossRefGoogle Scholar
  22. 22.
    Happi Emaga T, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M. Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem. 103: 590–600 (2007)CrossRefGoogle Scholar
  23. 23.
    Li A, Antizar-Ladislao B, Khraisheh M. Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst. Eng. 30 (3):189–196 (2007)CrossRefGoogle Scholar
  24. 24.
    Negro MJ, Ballesteros I, Manzanares P, Oliva JM, Sáez F, Ballesteros M. Inulin-containing biomass for ethanol production. Appl. Biochem. Biotechnol. 132 (1): 922–932 (2006)CrossRefGoogle Scholar
  25. 25.
    Wilkins MR, Suryawati L, Maness NO, Chrz D. Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil. World J. Microbiol. Biotechnol. 23 (8): 1161–1168 (2007)CrossRefGoogle Scholar
  26. 26.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673–686 (2005)CrossRefGoogle Scholar
  27. 27.
    Hammond JB, Egg R, Diggins D, Coble CG. Alcohol from bananas. Bioresour. Technol. 56 (1): 125–130 (1996)CrossRefGoogle Scholar
  28. 28.
    Oberoi HS, Sandhu SK, Vadlani PV. Statistical optimization of hydrolysis process for banana peels using cellulolytic and pectinolytic enzymes. Food Bioprod. Process. 90: 257–265 (2012)CrossRefGoogle Scholar
  29. 29.
    Oberoi HS, Vadlani PV, Saida L, Bansal S, Hughes JD. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process. Waste Manag. 31: 1576–1584 (2011)CrossRefGoogle Scholar
  30. 30.
    Cortés-Arganda JF, Ramos-González R, Segura-Ceniceros EP, Martínez-Hernández JL, Rutiaga Quiñones OM, Iliná A. Screening of Kluyveromyces marxianus strains for ethanol production. II435. In: IAFP’s 5th Latin American Symposium in Food Safety, 7th Food Science, Biotechnology and Safety Meeting. November 9–11, Convention Center, Cancún. Mexico (2016)Google Scholar
  31. 31.
    Zhang Q, Wu D, Lin Y, Wang X, Kong H, Tanaka S. Substrate and product inhibition on yeast performance in ethanol fermentation. Energy Fuels 29: 1019–1027 (2015)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Sócrates Palacios
    • 1
    • 2
  • Héctor A. Ruiz
    • 1
  • Rodolfo Ramos-Gonzalez
    • 3
  • José Martínez
    • 1
  • Elda Segura
    • 1
  • Miguel Aguilar
    • 4
  • Antonio Aguilera
    • 5
  • Georgina Michelena
    • 6
  • Cristóbal Aguilar
    • 1
  • Anna Ilyina
    • 1
    Email author
  1. 1.Nanobioscience and Biorefinery Groups, Food Research Department, Chemistry SchoolAutonomous University of CoahuilaSaltilloMexico
  2. 2.Faculty of Engineering in Mechanics and Production SciencesPolytechnic School of LitoralGuayaquilEcuador
  3. 3.CONACYT- Autonomous University of CoahuilaSaltilloMexico
  4. 4.Research Center and Advanced Studies of IPN (CINVESTAV-IPN)Ramos ArizpeMexico
  5. 5.Antonio Narro Agrarian Autonomous UniversityBuenavistaMexico
  6. 6.ICIDCA – Cuban Research Institute of Derivatives SugarcaneLa HabanaCuba

Personalised recommendations