Skip to main content
Log in

Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Catechin-loaded Ca-alginate beads and microparticles were prepared by an emulsion gelation method using sunflower oil for efficient sustained release of catechin. The emulsion was prepared by sequential mixing of alginate, oil, and oleic acid ester as an emulsifier. Encapsulation efficiency (EE) and inhibition of catechin release of the beads were significantly increased approximately to 453.83 and 148.71% by the emulsion gelation technique, respectively (p<0.05). For the microparticles, the highest inhibition of catechin release after 1 h of incubation (78.82%) was observed at the microparticles prepared by 5% (w/w) oil, 3% (w/w) alginate, 4% (w/v) CaCl2, and 200 mg catechin with the most hydrophilic emulsifier, decaglycerol mono-ester. Moreover, the catechin release was sustained at acidic conditions and increased with increase in pH of release medium. These results suggest that catechin encapsulation within Ca-alginate particles by emulsion gelation method can be an effective delivery system for catechin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crespy V, Williamson G. A review of the health effects of green tea catechins in in vivo animal models. J. Nutr. 134: 3431S–3440S (2004)

    CAS  Google Scholar 

  2. Cai Y, Anavy ND, Chow HS. Contribution of presystemic hepatic extraction to the low oral bioavailability of green tea catechins in rats. Drug Metab. Dispos. 30: 1246–1249 (2002)

    Article  CAS  Google Scholar 

  3. Zhu QY, Zhang A, Tsang D, Huang Y, Chen ZY. Stability of green tea catechins. J. Agr. Food Chem. 45: 4624–4628 (1997)

    Article  CAS  Google Scholar 

  4. Fang Z, Bhandari B. Encapsulation of polyphenols-a review. Trends Food Sci. Tech. 21: 510–523 (2010)

    Article  CAS  Google Scholar 

  5. Haidong L, Fang Y, Zhihong T, Changle R. Study on preparation of ß-cyclodextrin encapsulation tea extract. Int. J. Biol. Macromol. 49: 561–566 (2011)

    Article  Google Scholar 

  6. Peres I, Rocha S, Gomes J, Morais S, Pereira MC, Coelho M. Preservation of catechin antioxidant properties loaded in carbohydrate nanoparticles. Carbohyd. Polym. 86: 147–153 (2011)

    Article  CAS  Google Scholar 

  7. Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 28: 621–630 (2002)

    Article  Google Scholar 

  8. Schoubben A, Blasi P, Giovagnoli S, Rossi C, Ricci M. Development of a scalable procedure for fine calcium alginate particle preparation. Chem. Eng. J. 160: 363–369 (2010)

    Article  CAS  Google Scholar 

  9. Chan AW, Neufeld RJ. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials. Biomaterials 30: 6119–6129 (2009)

    Article  CAS  Google Scholar 

  10. Bajpai S, Tankhiwale R. Investigation of dynamic release of vitamin B2 from calcium alginate/chitosan multilayered beads: Part II. React. Funct. Polym. 66: 1565–1574 (2006)

    Article  CAS  Google Scholar 

  11. Hansen LT, Allan-Wojtas P, Jin Y-L, Paulson A. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 19: 35–45 (2002)

    CAS  Google Scholar 

  12. Sezer A, Akbuga J. Release characteristics of chitosan treated alginate beads: II.Sustained release of a low molecular drug from chitosan treated alginate beads. J. Microencapsul. 16: 687–696 (1999)

    Article  CAS  Google Scholar 

  13. Reis CP, Neufeld RJ, Vilela S, Ribeiro AJ, Veiga F. Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J. Microencapsul. 23: 245–257 (2006)

    Article  CAS  Google Scholar 

  14. Choudhury P, Kar M. Preparation of alginate gel beads containing metformin hydrochloride using emulsion-gelation method. Trop. J. Pharm. Res. 4: 489–493 (2007)

    Article  Google Scholar 

  15. Sriamornsak P, Thirawong N, Puttipipatkhachorn S. Emulsion gel beads of calcium pectinate capable of floating on the gastric fluid: Effect of some additives, hardening agent or coating on release behavior of metronidazole. Eur. J. Pharm. Sci. 24: 363–373 (2005)

    Article  CAS  Google Scholar 

  16. Sriamornsak P, Asavapichayont P, Nunthanid J, Luangtana-anan M, Limmatvapirat S, Piriyaprasarth S. Wax-incorporated emulsion gel beads of calcium pectinate for intragastric floating drug delivery. AAPS PharmSciTech. 9: 571–576 (2008)

    Article  CAS  Google Scholar 

  17. Zhang ZQ, Pan C H, Chung D. Tannic acid c ross-linked g elatin–gu m arabic coacervate microspheres for sustained release of allyl isothiocyanate: Characterization and in vitro release study. Food Res. Int. 44: 1000–1007 (2011)

    Article  Google Scholar 

  18. Joye IJ, McClements DJ. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr. Opin. Colloid In. 19: 417–427 (2014)

    Article  CAS  Google Scholar 

  19. Yoo SH, Song YB, Chang PS, Lee HG. Microencapsulation of a-tocopherol using sodium alginate and its controlled release properties. Int. J. Biol. Macromol. 38: 25–30 (2006)

    Article  CAS  Google Scholar 

  20. Dalluge JJ, Nelson BC. Determination of tea catechins. J. Chromatogr. A 881: 411–424 (2000)

    Article  CAS  Google Scholar 

  21. Lee J-S, Kim EJ, Chung D, Lee HG. Characteristics and antioxidant activity of catechin-loaded calcium pectinate gel beads prepared by internal gelation. Colloid. Surface. B 74: 17–22 (2009)

    Article  CAS  Google Scholar 

  22. Cacace J, Reilly EE, Amann A. Comparison of the dissolution of metaxalone tablets (Skelaxin) using USP apparatus 2 and 3. AAPS PharmSciTech. 5: 29–31 (2004)

    Google Scholar 

  23. Kumar A, Lahiri SS, Singh H. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery. Int. J. Pharm. 323: 117–124 (2006)

    Article  CAS  Google Scholar 

  24. Shishikura Y, Khokhar S, Murray BS. Effects of tea polyphenols on emulsification of olive oil in a small intestine model system. J. Agr. Food Chem. 54: 1906–1913 (2006)

    Article  CAS  Google Scholar 

  25. Xu QY, Nakajima M, Nabetani H, Ichikawa S, Liu XQ. Factors affecting the properties of ethanol-in-oil emulsions. Food Sci. Technol. Res. 8: 36–41 (2002)

    Article  CAS  Google Scholar 

  26. Devani M, Ashford M, Craig DQ. The emulsification and solubilisation properties of polyglycolysed oils in self-emulsifying formulations. J. Pharm. Pharmacol. 56: 307–316 (2004)

    Article  CAS  Google Scholar 

  27. Chan ES. Preparation of Ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohyd. Polym. 84: 1267–1275 (2011)

    Article  CAS  Google Scholar 

  28. Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloid. Surface. B. 90: 21–27 (2012)

    Article  CAS  Google Scholar 

  29. Draget KI, Gåserød O, Aune I, Andersen PO, Storbakken B, Stokke BT, Smidsrød O. Effects of molecular weight and elastic segment flexibility on syneresis in Ca-alginate gels. Food Hydrocolloid. 15: 485–490 (2001)

    Article  CAS  Google Scholar 

  30. Chan L, Jin Y, Heng P. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. Int. J. Pharm. 242: 255–258 (2002)

    Article  CAS  Google Scholar 

  31. Yoncheva K, Vandervoort J, Ludwig A. Influence of process parameters of highpressure emulsification method on the properties of pilocarpine-loaded nanoparticles. J. Microencapsul. 20: 449–458 (2003)

    Article  CAS  Google Scholar 

  32. Yu CY, Zhang XC, Zhou FZ, Zhang XZ, Cheng SX, Zhuo RX. Sustained release of antineoplastic drugs from chitosan-reinforced alginate microparticle drug delivery systems. Int. J. Pharm. 357: 15–21 (2008)

    Article  CAS  Google Scholar 

  33. Sriamornsak P, Thirawong N, Korkerd K. Swelling, erosion and release behavior of alginate-based matrix tablets. Eur. J. Pharm. Biopharm. 66: 435–450 (2007)

    Article  CAS  Google Scholar 

  34. Hiorth M, Versland T, Heikkilä J, Tho I, Sande SA. Immersion coating of pellets with calcium pectinate and chitosan. Int. J. Pharm. 308: 25–32 (2006)

    Article  CAS  Google Scholar 

  35. Amancha KP, Balkundi S, Lvov Y, Hussain A. Pulmonary sustained release of insulin from microparticles composed of polyelectrolyte layer-by-layer assembly. Int. J. Pharm. 466: 96–108 (2014)

    Article  CAS  Google Scholar 

  36. Calejo MT, Kjøniksen AL, Maleki A, Nyström B, Sande SA. Microparticles based on hydrophobically modified chitosan as drug carriers. J. Appl. Polym. Sci. 131: 1–11 (2014)

    Article  Google Scholar 

  37. Pasparakis G, Bouropoulos N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. Int. J. Pharm. 323: 34–42 (2006)

    Article  CAS  Google Scholar 

  38. Agarwal T, Narayana SGH, Pal K, Pramanik K, Giri S, Banerjee I. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery. Int. J. Biol. Macromol. 75: 409–417 (2015)

    Article  CAS  Google Scholar 

  39. Remunan-Lopez C, Bodmeier R. Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. J. Control. Release 44: 215–225 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Gyu Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.S., Lee, JS. & Lee, H.G. Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique. Food Sci Biotechnol 25, 1337–1343 (2016). https://doi.org/10.1007/s10068-016-0210-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0210-8

Keywords

Navigation