Advertisement

Food Science and Biotechnology

, Volume 25, Supplement 1, pp 1–7 | Cite as

Application of in vitro gut fermentation models to food components: A review

  • Jin Seok Moon
  • Ling Li
  • Jeongsu Bang
  • Nam Soo HanEmail author
Review

Abstract

In vitro fermentation models have been developed for study of relationships between gut microbiota and food components. In vitro fermentation gut models involve use of pure cultures, mixed cultures, and human feces, and range from simple batch style fermentations performed in serum bottles to sophisticated pH-controlled multistage continuous culture systems. These models are increasingly used as an alternative to in vivo assays not only for disclosure of physiological activities of food components in the human intestine, but also for development of novel health functional foods. The purpose of this review is to introduce the present status and challenges of use of in vitro gut fermentation models in food studies.

Keywords

human large intestine gut microbiota in vivo test in vitro fermentation model food component 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guerra A, Etienne-Mesmin L, Livrelli V, Denis S, Blanquet-Diot S, Alric M. Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol. 30: 591–600 (2012)CrossRefGoogle Scholar
  2. 2.
    Morgan BL, Winick M. Effects of administration of N-acetylneuraminic acid (NANA) on brain NANA content and behavior. J. Nutr. 110: 416–424 (1980)Google Scholar
  3. 3.
    Wang B, McVeagh P, Petocz P, Brand-Miller J. Brain ganglioside and glycoprotein sialic acid in freast-fed compared with formula-fed infants. Am. J. Clin. Nutr. 78: 1024–1029 (2003)Google Scholar
  4. 4.
    Sarbini SR, Kolida S, Deaville ER, Gibson GR, Rastall RA. Potential of novel dextran oligosaccharides as prebiotics for obesity management through in vitro experimentation. Br. J. Nutr. 112: 1303–1314 (2014)CrossRefGoogle Scholar
  5. 5.
    Van Den Abbeele P, Venema K, Van De Wiele T, Verstraete W, Possemiers S. Different human gut models reveal the distinct fermentation patterns of arabinoxylan versus inulin. J. Agr. Food Chem. 61: 9819–9827 (2013)CrossRefGoogle Scholar
  6. 6.
    Yu ZT, Chen C, Kling DE, Liu B, McCoy JM, Merighi M, Heidtman M, Newburg DS. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology 23: 169–177 (2013)CrossRefGoogle Scholar
  7. 7.
    Al-Tamimi MA, Palframan RJ, Cooper JM, Gibson GR, Rastall RA. In vitro fermentation of sugar beet arabinan and arabino-oligosaccharides by the human gut microflora. J. Appl. Microbiol. 100: 407–414 (2006)CrossRefGoogle Scholar
  8. 8.
    Walton GE, van den Heuvel EG, Kosters MH, Rastall RA, Tuohy KM, Gibson GR. A randomised crossover study investigating the effects of galactooligosaccharides on the faecal microbiota in men and women over 50 years of age. Br. J. Nutr. 107: 1466–1475 (2012)CrossRefGoogle Scholar
  9. 9.
    Yin J, Zhang XX, Wu B, Xian Q. Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut. Ecotoxicology 24: 2125–2132 (2015)CrossRefGoogle Scholar
  10. 10.
    Rescigno M. Intestinal microbiota and its effects on the immune system. Cell. Microbiol. 16: 1004–1013 (2014)CrossRefGoogle Scholar
  11. 11.
    Kramer A, Bekeschus S, Bröker BM, Schleibinger H, Razavi B, Assadian O. Maintaining health by balancing microbial exposure and prevention of infection: The hygiene hypothesis versus the hypothesis of early immune challenge. J. Hosp. Infect. 83: 29–34 (2013)CrossRefGoogle Scholar
  12. 12.
    Carey CM, Kirk JL, Ojha S, Kostrzynska M. Current and future uses of real-time polymerase chain reaction and microarrays in the study of intestinal microbiota, and probiotic use and effectiveness. Can. J. Microbiol. 53: 537–550 (2007)CrossRefGoogle Scholar
  13. 13.
    Arboleya S, Salazar N, Solís G, Fernández N, Gueimonde M, de los Reyes-Gavilán CG. In vitro evaluation of the impact of human background microbiota on the response to Bifidobacterium strains and fructooligosaccharides. Br. J. Nutr. 110: 2030–2036 (2013)CrossRefGoogle Scholar
  14. 14.
    Oviedo-Rondón EO. Molecular methods to evaluate effects of feed additives and nutrients in poultry gut microflora. Rev. Bras. Zootecn. 38: 209–225 (2009)CrossRefGoogle Scholar
  15. 15.
    Fraher MH, O’Toole PW, Quigley EM. Techniques used to characterize the gut microbiota: A guide for the clinician. Nat. Rev. Gastroenterol. Hepatol. 9: 312–322 (2012)CrossRefGoogle Scholar
  16. 16.
    Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR. Molecular ecological analysis of the gastrointestinal microbiota: A review. J. Nutr. 134: 465–472 (2004)Google Scholar
  17. 17.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science 308: 1635–1638 (2005)CrossRefGoogle Scholar
  18. 18.
    Souliman S, Blanquet S, Beyssac E, Cardot JM. A level A in vitro/in vivo correlation in fasted and fed states using different methods: Applied to solid immediate release oral dosage form. Eur. J. Pharm. Sci. 27: 72–79 (2006)CrossRefGoogle Scholar
  19. 19.
    Souliman S, Beyssac E, Cardot JM, Denis S, Alric M. Investigation of the biopharmaceutical behavior of theophylline hydrophilic matrix tablets using USP methods and an artificial digestive system. Drug Dev. Ind. Pharm. 33: 475–483 (2007)CrossRefGoogle Scholar
  20. 20.
    Minekus M, Marteau P, Havenaar R, Huis in’t Veld JHH. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Altern. Lab. Anim. 23: 197–209 (1995)Google Scholar
  21. 21.
    Blanquet-Diot S, Soufi M, Rambeau M, Rock E, Alric M. Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system. J. Nutr. 139: 876–883 (2009)CrossRefGoogle Scholar
  22. 22.
    Molly K, Vande Woestyne M, De Smet I, Verstraete W. Validation of the simulator of the human intestinal microbial ecosystem (SHIME) reactor using microorganism-associated activities. Microb. Ecol. Health D. 7: 191–200 (1994)CrossRefGoogle Scholar
  23. 23.
    Le Blay G, Chassard C, Baltzer S, Lacroix C. Set up of a new in vitro model to study dietary fructans fermentation in formula-fed babies. Br. J. Nutr. 103: 403–411 (2010)CrossRefGoogle Scholar
  24. 24.
    Champagne CP, Lacroix C, Sodini-Gallot I. Immobilized cell technologies for the dairy industry. Crit. Rev. Biotechnol. 14: 109–134 (1994)CrossRefGoogle Scholar
  25. 25.
    Doleyres Y, Paquin C, LeRoy M, Lacroix C. Bifidobacterium longum ATCC 15707 cell production during free-and immobilized-cell cultures in MRS-whey permeate medium. Appl. Microbiol. Biot. 60: 168–173 (2002)CrossRefGoogle Scholar
  26. 26.
    Doleyres Y, Fliss I, Lacroix C. Quantitative determination of the spatial distribution of pure-and mixed-strain immobilized cells in gel beads by immunofluorescence. Appl. Microbiol. Biot. 59: 297–302 (2002)CrossRefGoogle Scholar
  27. 27.
    Zihler A, Gagnon M, Chassard C, Hegland A, Stevens MJ, Braegger CP, Lacroix C. Unexpected consequences of administering bacteriocinogenic probiotic strains for Salmonella populations, revealed by an in vitro colonic model of the child gut. Microbiology 156: 3342–3353 (2010)CrossRefGoogle Scholar
  28. 28.
    Le Blay G, Rytka J, Zihler A, Lacroix C. New in vitro colonic fermentation model for Salmonella infection in the child gut. FEMS. Microbiol. Ecol. 67: 198–207 (2009)CrossRefGoogle Scholar
  29. 29.
    Macfarlane S, Dillon JF. Microbial biofilms in the human gastrointestinal tract. J. Appl. Microbiol. 102: 1187–1196 (2007)CrossRefGoogle Scholar
  30. 30.
    De Boever P, Wouters R, Vermeirssen V, Boon N, Verstraete W. Development of a six-stage culture system for simulating the gastrointestinal microbiota of weaned infants. Microb. Ecol. Health D. 13: 111–123 (2001)CrossRefGoogle Scholar
  31. 31.
    Sghir A, Chow JM, Mackie RI. Continuous culture selection of bifidobacteria and lactobacilli from human faecal samples using fructooligosaccharide as selective substrate. J. Appl. Microbiol. 85: 769–777 (1998)CrossRefGoogle Scholar
  32. 32.
    Macfarlane GT, Macfarlane S, Gibson GR. Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microbial Ecol. 35: 180–187 (1998)CrossRefGoogle Scholar
  33. 33.
    Macfarlane S, Quigley ME, Hopkins MJ, Newton DF, Macfarlane GT. Polysaccharide degradation by human intestinal bacteria during growth under multi-substrate limiting conditions in a three-stage continuous culture system. FEMS. Microbiol. Ecol. 26: 231–243 (1998)CrossRefGoogle Scholar
  34. 34.
    Lacroix C, LeBlay G, Cinquin C, Fliss I. In vitro gastrointestinal model system and uses thereof. U.S. Patent 20,040,101,906 (2004)Google Scholar
  35. 35.
    Child MW, Kennedy A, Walker AW, Bahrami B, Macfarlane S, Macfarlane GT. Studies on the effect of system retention time on bacterial populations colonizing a three-stage continuous culture model of the human large gut using FISH techniques. FEMS. Microbiol. Ecol. 55: 299–310 (2006)CrossRefGoogle Scholar
  36. 36.
    Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W, Gérard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Zoetendal E, Kleerebezem M, Smidt H, Van de Wiele T. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl. Environ. Microb. 76: 5237–5246 (2010)CrossRefGoogle Scholar
  37. 37.
    Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. P. Natl. Acad. Sci. USA 101: 15718–15723 (2004)CrossRefGoogle Scholar
  38. 38.
    Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut 35: S35–S38 (1994)CrossRefGoogle Scholar
  39. 39.
    McNeil NI. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39: 338–342 (1984)Google Scholar
  40. 40.
    Robert C, Bernalier-Donadille A. The cellulolytic microflora of the human colon: Evidence of microcrystalline cellulose-degrading bacteria in methaneexcreting subjects. FEMS. Microbiol. Ecol. 46: 81–89 (2003)CrossRefGoogle Scholar
  41. 41.
    Minekus M, Havenaar R. Reactor system. European Patent 0642382 (1998)Google Scholar
  42. 42.
    Possemiers S, Verthé K, Uyttendaele S, Verstraete W. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 49: 495–507 (2004)CrossRefGoogle Scholar
  43. 43.
    Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, Tameda M, Shiraki K, Ito M, Takei Y, Takase K. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and nextgeneration sequencing. BMC Gastroenterol. 15: 100 (2015)CrossRefGoogle Scholar
  44. 44.
    Moon JS, Shin SY, Choi HS, Joo W, Cho SK, Li L, Kang JH, Kim TJ, Han NS. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohyd. Polym. 131: 50–56 (2015)CrossRefGoogle Scholar
  45. 45.
    Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microb. 70: 6459–6465 (2004)CrossRefGoogle Scholar
  46. 46.
    De Boever P, Deplancke B, Verstraete W. Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. J. Nutr. 130: 2599–2606 (2000)Google Scholar
  47. 47.
    Kempermana RA, Gross G, Mondot S, Possemiers S, Marzorati M, van de Wiele T, Doré J, Vaughan EE. Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Res. Int. 53: 659–669 (2013)CrossRefGoogle Scholar
  48. 48.
    Pompei A, Cordisco L, Raimondi S, Amaretti A, Pagnoni UM, Matteuzzi D, Rossi M. In vitro comparison of the prebiotic effects of two inulin-type fructans. Anaerobe 14: 280–286 (2008)CrossRefGoogle Scholar
  49. 49.
    Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 11: 2112–2122 (2009)CrossRefGoogle Scholar
  50. 50.
    Maccaferri S, Vitali B, Klinder A, Kolida S, Ndagijimana M, Laghi L, Calanni F, Brigidi P, Gibson GR, Costabile A. Rifaximin modulates the colonic microbiota of patients with Crohn’s disease: An in vitro approach using a continuous culture colonic model system. J. Antimicrob. Chemother. 65: 2556–2565 (2010)CrossRefGoogle Scholar
  51. 51.
    Blanquet-Diot S, Soufi M, Rambeau M, Rock E, Alric M. Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system. J. Nutr. 139: 876–883 (2009)CrossRefGoogle Scholar
  52. 52.
    Moon JS, Joo W, Li L, Choi HS, Han NS. In vitro digestion and fermentation of sialyllactoses by infant gut microflora. J. Funct. Foods 21: 497–506 (2016)CrossRefGoogle Scholar
  53. 53.
    Rycroft CE, Jones MR, Gibson GR, Rastall RA. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microbiol. 91: 878–887 (2001)CrossRefGoogle Scholar
  54. 54.
    Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S, Spencer JP, de Pascual-Teresa S. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J. Agr. Food Chem. 60: 3882–3890 (2012)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jin Seok Moon
    • 1
  • Ling Li
    • 1
  • Jeongsu Bang
    • 1
  • Nam Soo Han
    • 1
    Email author
  1. 1.Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food SciencesChungbuk National UniversityCheongju, ChungbukKorea

Personalised recommendations