Food Science and Biotechnology

, Volume 25, Issue 2, pp 623–629 | Cite as

Compositional analysis of walnut lipid extracts and properties as an anti-cancer stem cell regulator via suppression of the self-renewal capacity

  • Jooyeon Chung
  • Yoo-Sun Kim
  • Jisoo Lee
  • Jae Hwan Lee
  • Sang-Woon Choi
  • Yuri Kim
Article

Abstract

Colon cancer is a leading cause of cancer-related deaths worldwide. Effects of walnut (Juglans regia L.) lipid extracts (WLEs) on the self-renewal capacity of cancer stem cells (CSCs) in colon cancer were investigated. The dominant component of WLEs was α-linoleic acid (64.6%), followed by α-linolenic acid (14.6%), and oleic acid (12.6%). A higher concentration of γ-tocopherol (37.1%) was also present than of α-tocopherol (0.6%). CD133+CD44+CSCs treated with WLEs showed inhibition of colony formation and sphere formation, indicating a decrease in the self-renewal capacity. Treatment with WLEs also resulted in down-regulation of protein levels, including Notch1, phospho-GSK3β (p-GSK3β), and β-catenin, which are associated with CSCs and the self-renewing capacity. WLEs rich in essential fatty acids and γ-tocopherol can exert therapeutic actions on colon cancer via targeting of CSCs.

Keywords

walnut lipid extract colon cancer cancer stem cell self-renewal capacity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA-Cancer J. Clin. 61: 69–90 (2011)CrossRefGoogle Scholar
  2. 2.
    Dalerba P, Cho RW, Clarke MF. Cancer stem cells: Models and concepts. Annu. Rev. Med. 58: 267–284 (2007)CrossRefGoogle Scholar
  3. 3.
    Min SJ, Lim JY, Kim HR, Kim SJ, Kim Y. Sasa quelpaertensis leaf extract inhibits colon cancer by regulating cancer cell stemness in vitro and in vivo. Int. J. Mol. Sci. 16: 9976–9997 (2015)CrossRefGoogle Scholar
  4. 4.
    Chen KL, Pan F, Jiang H, Chen JF, Pei L, Xie FW, Liang HJ. Highly enriched CD133(+)CD44(+) stem-like cells with CD133(+)CD44 (high) metastatic subset in HCT116 colon cancer cells. Clin. Exp. Metastas. 28: 751–763 (2011)CrossRefGoogle Scholar
  5. 5.
    Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, Poppleton H, Zakharenko S, Ellison DW, Gilbertson RJ. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457: 603–607 (2009)CrossRefGoogle Scholar
  6. 6.
    Keysar SB, Jimeno A. More than markers: Biological significance of cancer stem cell-defining molecules. Mol. Cancer Ther. 9: 2450–2457 (2010)CrossRefGoogle Scholar
  7. 7.
    O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110 (2007)CrossRefGoogle Scholar
  8. 8.
    Wang Z, Li Y, Banerjee S, Sarkar FH. Emerging role of Notch in stem cells and cancer. Cancer Lett. 279: 8–12 (2009)CrossRefGoogle Scholar
  9. 9.
    Mumm JS, Kopan R. Notch signaling: From the outside in. Dev. Biol. 228: 151–165 (2000)CrossRefGoogle Scholar
  10. 10.
    Groden J, Joslyn G, Samowitz W, Jones D, Bhattacharyya N, Spirio L, Thliveris A, Robertson M, Egan S, Meuth M, White R. Response of colon cancer cell lines to the introduction of APC, a colon-specific tumor suppressor gene. Cancer Res. 55: 1531–1539 (1995)Google Scholar
  11. 11.
    Metcalfe C, Bienz M. Inhibition of GSK3 by Wnt signalling—two contrasting models. J. Cell Sci. 124: 3537–3544 (2011)CrossRefGoogle Scholar
  12. 12.
    Feldman EB. The scientific evidence for a beneficial health relationship between walnuts and coronary heart disease. J. Nutr. 132: 1062S–1101S (2002)Google Scholar
  13. 13.
    Kris-Etherton PM. Walnuts decrease risk of cardiovascular disease: A summary of efficacy and biologic mechanisms. J. Nutr. 144: 547S–554S (2014)CrossRefGoogle Scholar
  14. 14.
    Poulose SM, Miller MG, Shukitt-Hale B. Role of walnuts in maintaining brain health with age. J. Nutr. 144: 561S–566S (2014)CrossRefGoogle Scholar
  15. 15.
    Hardman WE, Ion G, Akinsete JA, Witte TR. Dietary walnut suppressed mammary gland tumorigenesis in the C(3)1 TAg mouse. Nutr. Cancer 63: 960–970 (2011)CrossRefGoogle Scholar
  16. 16.
    Kim H, Yokoyama W, Davis PA. TRAMP prostate tumor growth is slowed by walnut diets through altered IGF-1 levels, energy pathways, and cholesterol metabolism. J. Med. Food 17: 1281–1286 (2014)CrossRefGoogle Scholar
  17. 17.
    Tsoukas MA, Ko BJ, Witte TR, Dincer F, Hardman WE, Mantzoros CS. Dietary walnut suppression of colorectal cancer in mice: Mediation by miRNA patterns and fatty acid incorporation. J. Nutr. Biochem. 26: 776–783 (2015)CrossRefGoogle Scholar
  18. 18.
    Kim Y, Lin Q, Zelterman D, Yun Z. Hypoxia-regulated delta-like 1 homologue enhances cancer cell stemness and tumorigenicity. Cancer Res. 69: 9271–9280 (2009)CrossRefGoogle Scholar
  19. 19.
    Crews C, Hough P, Godward J, Brereton P, Lees M, Guiet S, Winkelmann W. Study of the main constituents of some authentic walnut oils. J. Agr. Food Chem. 53: 4853–4860 (2005)CrossRefGoogle Scholar
  20. 20.
    Pereira JA, Oliveira I, Sousa A, Ferreira IC, Bento A, Estevinho L. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 46: 2103–2111 (2008)CrossRefGoogle Scholar
  21. 21.
    Savage GP DP, McNeil DL. Fatty acid and tocopherol contents and oxidative stability of walnut oils. J. Am. Oil Chem. Soc. 76: 1059–1063 (1999)Google Scholar
  22. 22.
    Sahlberg SH, Spiegelberg D, Glimelius B, Stenerlow B, Nestor M. Evaluation of cancer stem cell markers CD133, CD44, CD24: Association with AKT isoforms and radiation resistance in colon cancer cells. PLoS ONE 9: e94621 (2014)CrossRefGoogle Scholar
  23. 23.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66: 9339–9344 (2006)CrossRefGoogle Scholar
  24. 24.
    Lee HA, Park S, Kim Y. Effect of beta-carotene on cancer cell stemness and differentiation in SK-N-BE(2)C neuroblastoma cells. Oncol. Rep. 30: 1869–1877 (2013)Google Scholar
  25. 25.
    Li Y, Zhang T, Korkaya H, Liu S, Lee HF, Newman B, Yu Y, Clouthier SG, Schwartz SJ, Wicha MS, Sun D. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin. Cancer Res. 16: 2580–2590 (2010)CrossRefGoogle Scholar
  26. 26.
    Chung SS, Vadgama JV. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFkappaB signaling. Anticancer Res. 35: 39–46 (2015)Google Scholar
  27. 27.
    Vanden Heuvel JP, Belda BJ, Hannon DB, Kris-Etherton PM, Grieger JA, Zhang J, Thompson JT. Mechanistic examination of walnuts in prevention of breast cancer. Nutr. Cancer 64: 1078–1086 (2012)CrossRefGoogle Scholar
  28. 28.
    Carey AN, Fisher DR, Joseph JA, Shukitt-Hale B. The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells. Nutr. Neurosci. 16: 13–20 (2013)CrossRefGoogle Scholar
  29. 29.
    Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM. Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J. Nutr. 134: 2991–2997 (2004)Google Scholar
  30. 30.
    Yang T, Fang S, Zhang HX, Xu LX, Zhang ZQ, Yuan KT, Xue CL, Yu HL, Zhang S, Li YF, Shi HP, Zhang Y. N-3 PUFAs have antiproliferative and apoptotic effects on human colorectal cancer stem-like cells in vitro. J. Nutr. Biochem. 24: 744–753 (2013)CrossRefGoogle Scholar
  31. 31.
    Ju J, Hao X, Lee MJ, Lambert JD, Lu G, Xiao H, Newmark HL, Yang CS. A gammatocopherol-rich mixture of tocopherols inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-treated mice. Cancer Prev. Res. 2: 143–152 (2009)CrossRefGoogle Scholar
  32. 32.
    Fender AW, Nutter JM, Fitzgerald TL, Bertrand FE, Sigounas G. Notch-1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer. J. Cell Biochem. 116: 2517–2527 (2015)CrossRefGoogle Scholar
  33. 33.
    De Carlo F, Witte TR, Hardman WE, Claudio PP. Omega-3 eicosapentaenoic acid decreases CD133 colon cancer stem-like cell marker expression while increasing sensitivity to chemotherapy. PLoS ONE 8: e69760 (2013)CrossRefGoogle Scholar
  34. 34.
    Liu S, Dontu G, Wicha MS. Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 7: 86–95 (2005)CrossRefGoogle Scholar
  35. 35.
    Suttiarporn P, Chumpolsri W, Mahatheeranont S, Luangkamin S, Teepsawang S, Leardkamolkam V. Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients 7: 1672–1687 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jooyeon Chung
    • 1
  • Yoo-Sun Kim
    • 1
  • Jisoo Lee
    • 1
  • Jae Hwan Lee
    • 2
  • Sang-Woon Choi
    • 3
  • Yuri Kim
    • 1
  1. 1.Department of Nutritional Science and Food ManagementEwha Womans UniversitySeoulKorea
  2. 2.Department of Food Science and BiotechnologySungkyunkwan UniversitySuwonKorea
  3. 3.Chaum Life CenterCHA UniversitySeoulKorea

Personalised recommendations