Food Science and Biotechnology

, Volume 24, Issue 6, pp 2083–2094 | Cite as

Comparative study of fecal microbiota in patients with type II diabetes after consumption of apple juice for 4 weeks

  • Gyu-Sung ChoEmail author
  • Anja König
  • Stephanie Seifert
  • Alexander Hanak
  • Alexander Roth
  • Melanie Huch
  • Achim Bub
  • Bernhard Watzl
  • Charles M. A. P. Franz


The effect of cloudy apple juice on fecal microbiota of type 2 diabetics was studied. Five volunteers consumed apple juice while 5 control volunteers received an isocaloric control beverage daily for 4 weeks. DGGE profile analysis showed high diversity between volunteers that did not change over the intervention period using primers for Firmicutes, Bacteroidetes, bifidobacteria, enterococci, and enterobacteria. An exception was observed using lactobacilli primers, perhaps as the result of the dietary influence. Consumption of apple juice was not correlated with changes in DGGE profiles. Quantitative PCR was used to investigate the effect of apple juice on bacterial counts in different subgroups. Apple juice did not lead to significantly (p>0.05) different numbers of total bacteria, enterobacteria, bifidobacteria, lactobacilli, or Bacteroidetes, but caused a significant (p<0.05) decrease in numbers of enterococci, and a smaller but also significant decrease in numbers of Firmicutes, when comparing before and after intervention with apple juice.


apple juice diabetes gut microbiota 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turroni F, Ribbera A, Foroni E, van Sinderen D, Ventura M. Human gut microbiota and bifidobacteria: From composition tofunctionality. Anton Leeuw. Int. J. G. 94: 35–50 (2008)CrossRefGoogle Scholar
  2. 2.
    Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58: 572–582 (2006)CrossRefGoogle Scholar
  3. 3.
    Barth SW, Fähndrich C, Bub A, Dietrich H, Watzl B, Will F, Briviba K, Rechkemmer G. Cloudy apple juice decreases DNA damage, hyperproliferation and aberrant crypt foci development in the distal colon of DMH-initiated rats. Carcinogenesis 126: 1414–1421 (2005)CrossRefGoogle Scholar
  4. 4.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027–1031 (2006)CrossRefGoogle Scholar
  5. 5.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature 457: 480–484 (2009)CrossRefGoogle Scholar
  6. 6.
    Wang XL, Hur HG, Lee JH, Kim KT, Kim SI. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl. Environ. Microb. 71: 214–219 (2005)CrossRefGoogle Scholar
  7. 7.
    Hsu CL, Yen GC. Phenolic compounds: Evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol. Nutr. Food Res. 52: 53–61 (2008)CrossRefGoogle Scholar
  8. 8.
    Shinohara K, Ohashi Y, Kawasumi K, Terada A, Fujisawa T. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe 16: 510–515 (2010)CrossRefGoogle Scholar
  9. 9.
    Barth SW, Koch TC, Watzl B, Dietrich H, Will F, Bub, A. Moderate effects of apple juice consumption on obesity-related markers in obese men: Impact of diet-gene interaction on body fat content. Eur. J. Nutr. 51: 841–850 (2012)CrossRefGoogle Scholar
  10. 10.
    Larsen N, Vogensen FK, van den Berg FWJ, Nielsen D S, Andreasen A S, Pedersen BK, Abu Al-Soud W, Sorensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5: e9085 (2010)CrossRefGoogle Scholar
  11. 11.
    Mathara JM, Schillinger U, Guigas C, Franz C, Kutima PM, Mbugua SK, Shin HK, Holzapfel WH. Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int. J. Food Microbiol. 126: 57–64 (2008)Google Scholar
  12. 12.
    Cho GS, Huch M, Hanak A, Holzapfel WH, Franz CM. Genetic analysis of the plantaricin EFI locus of Lactobacillus plantarum PCS20 reveals an unusual plantaricin E gene sequence as a result of mutation. Int. J. Food Microbiol. 141: S117–S124 (2010)CrossRefGoogle Scholar
  13. 13.
    Mühling M, Woolven-Allen J, Murrell JC, Joint I. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J. 2: 379–392 (2008)CrossRefGoogle Scholar
  14. 14.
    Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett. Appl. Microbiol. 47: 367–373 (2008)CrossRefGoogle Scholar
  15. 15.
    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 489: 220–230 (2012)CrossRefGoogle Scholar
  16. 16.
    Arumugam M, Raes J, Pelletier E, Le P aslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Meta HITC, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Merieux A, Melo Minardi R, M’ Rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P. Enterotypes of the human gut microbiome. Nature 473: 174–180 (2011)CrossRefGoogle Scholar
  17. 17.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology-Human gut microbes associated with obesity. Nature 444: 1022–1023 (2006)CrossRefGoogle Scholar
  18. 18.
    Jalanka-Tuovinen J, Salonen A, Nikkila J, Immonen O, Kekkonen R, Lahti L, Palva A, de Vos WM. Intestinal microbiota in healthy adults: Temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS ONE 6: e23035 (2011)CrossRefGoogle Scholar
  19. 19.
    Kolmeder CA, de Been M, Nikkila J, Ritamo I, Matto J, Valmu L, Salojarvi J, Palva A, Salonen A, de Vos WM. Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS ONE 7: e29913 (2012)CrossRefGoogle Scholar
  20. 20.
    Vanhoutte T, de Preter V, de Brandt E, Verbeke K, Swings J, Huys G. Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii. Appl. Environ. Microbiol. 72: 5990–5997 (2006)CrossRefGoogle Scholar
  21. 21.
    Wu XK, Ma CF, Han L, Nawaz M, Gao F, Zhang XY, Yu PB, Zhao CA, Li LC, Zhou AP, Wang JA, Moore JE, Millar BC, Xu JR. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr. Microbiol. 61: 69–78 (2010)CrossRefGoogle Scholar
  22. 22.
    Dal Bello F, Hertel C. Oral cavity as natural reservoir for intestinal lactobacilli. Syst. Appl. Microbiol. 29: 69–76 (2006)CrossRefGoogle Scholar
  23. 23.
    Ruoff KL. Recent taxonomic changes in the genus Enterococcus. Eur. J. Clin. Microbiol. 9: 75–79 (1990)CrossRefGoogle Scholar
  24. 24.
    Fujimoto J, Matsuki T, Sasamoto M, Tomii Y, Watanabe K. Identification and quantification of Lactobacillus casei strain Shirota in human feces with strainspecific primers derived from randomly amplified polymorphic DNA. Int. J. Food Microbiol. 126: 210–215 (2008)CrossRefGoogle Scholar
  25. 25.
    Harmsen HJM, Elfferich P, Schut F, Welling GW. A 16S rRNA-targeted probe for detection of Lactobacillus and Enterococci in faecal samples by fluorescent in situ hybridization. Microb. Ecol. Health D. 11: 3–12 (1999)CrossRefGoogle Scholar
  26. 26.
    Marchesi JR. Human distal gut microbiome. Environ. Microbiol. 13: 3088–3102 (2011)CrossRefGoogle Scholar
  27. 27.
    Walter J, Ley R. The human gut microbiome: Ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65: 411–429 (2011)CrossRefGoogle Scholar
  28. 28.
    Chenoweth C, Schaberg D. The epidemiology of enterococci. Eur. J. Clin. Microbiol. Infect. Dis. 9: 80–89 (1990)CrossRefGoogle Scholar
  29. 29.
    Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 97: 1166–1177 (2004)CrossRefGoogle Scholar
  30. 30.
    Remely M, Simone D, Berit H, Jutta Z, Eva A, Helmut B, Alexander H. Abundance and diversity of microbiota in type 2 diabetes and obesity. J. Diabetes Metab. 4: 253 (2013)Google Scholar
  31. 31.
    Licht TR, Hansen M, Bergstrom A, Poulsen M, Krath BN, Markowski J, Dragsted LO, Wilcks A. Effects of apples and specific apple components on the cecal environment of conventional rats: Role of apple pectin. BMC Microbiol. 10: 13 (2010)CrossRefGoogle Scholar
  32. 32.
    Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ, Remely M, Kitzweger E, Ruckser R, Haslberger AG. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE fingerprinting. PLoS ONE 6: e28654 (2011)CrossRefGoogle Scholar
  33. 33.
    Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS ONE 4: e7125 (2009)CrossRefGoogle Scholar
  34. 34.
    Malinen E, Kassinen A, Rinttilä T, Palva A. Comparison of real-time PCR with SYBR Green I or 5’ -nuclease assays and dot-blot hybridization with rDNAtargeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology 149: 269–277 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Gyu-Sung Cho
    • 1
    Email author
  • Anja König
    • 2
  • Stephanie Seifert
    • 3
  • Alexander Hanak
    • 2
  • Alexander Roth
    • 3
  • Melanie Huch
    • 2
  • Achim Bub
    • 3
  • Bernhard Watzl
    • 3
  • Charles M. A. P. Franz
    • 1
  1. 1.Department of Microbiology and BiotechnologyMax Rubner-Institut Federal Research Institute for Nutrition and FoodKielGermany
  2. 2.Department of Safety and Quality of Fruit and VegetablesKarlsruheGermany
  3. 3.Department of Physiology and Biochemistry of NutritionKarlsruheGermany

Personalised recommendations