Food Science and Biotechnology

, Volume 24, Issue 6, pp 1995–2001 | Cite as

Effects of microwave roasting on physicochemical properties of pistachios (Pistaciavera L.)

  • Mohammad HojjatiEmail author
  • Luis Noguera-Artiaga
  • Aneta Wojdyło
  • Ángel Antonio Carbonell-Barrachina


Effects of 480 and 640 W power levels and 2, 3 and 4 min for roasting of pistachios using microwaves (MW) on the physicochemical properties of pistachios in comparison with an Iranian traditional method of soaking in salty water and drying under hot-air at 135°C for 20 min were investigated. MW roasting of pistachios decreased water activity values, producing a softer nut. Twenty one volatile compounds were identified in roasted pistachios using GC-MS. The highest volatile concentration and sensory odor intensity scores were observed for hot air roasted pistachios and MW at 640 W for 4 min. Roasting reduced the force needed to cut pistachios. Unsaturated fatty acid contents in MW roasted pistachios were higher (82.0%) than in hot-air produced nuts (74.7%). Total phenolic content values increased with roasting time and with the MW power level. Pistachios can be successfully roasted using microwaves as a fast and economical method.


pistachio volatile fatty acid texture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kahyaoglu T. Optimization of the pistachio nut roasting process using response surface methodology and gene expression programming. LWT-Food Sci. Technol. 41: 26–33 (2008)CrossRefGoogle Scholar
  2. 2.
    Tsokou A, Georgopoulou K, Melliou E, Magiatis P, Tsitsa E. Composition and enantiomeric analysis of the essential oil of the fruits and the leaves of Pistacia vera from Greece. Molecules 12: 1233–1239 (2007)CrossRefGoogle Scholar
  3. 3.
    Chahed T, Bellila A, Dhifi W, Hamrouni I, M’hamdi B, Kchouk M, Marzouk B. Pistachio (Pistacia vera) seed oil composition: Geographic situation and variety effects. Grasas Aceites 59: 51–56 (2008)CrossRefGoogle Scholar
  4. 4.
    Fabani MP, Luna L, Baroni MV, Monferran MV, Ighani M, Tapia A, Wunderlin DA, Feresin GE. Pistachio (Pistacia vera var Kerman) from Argentinean cultivars. A natural product with potential to improve human health. J. Funct. Foods 5: 1347–1356 (2013)Google Scholar
  5. 5.
    Mandalari G, Bisignano C, Filocamo A, Chessa S, Sarò M, Torre G, Faulks RM, Dugo P. Bioaccessibility of pistachio polyphenols, xanthophylls, and tocopherols during simulated human digestion. Nutrition 29: 338–344 (2013)CrossRefGoogle Scholar
  6. 6.
    Tomaino A, Martorana M, Arcoraci T, Monteleone D, Giovinazzo C, Saija A. Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochimie 92: 1115–1122 (2010)CrossRefGoogle Scholar
  7. 7.
    Food and Agricultural commodities production. FAOSTAT. 2012. Available from: Accessed Aug. 13, 2014.Google Scholar
  8. 8.
    Zomorrodi A. Improvement of competitiveness: The case of Iranian pistachio. World J. Soc. Sci. 4: 237–250 (2014)Google Scholar
  9. 9.
    Saklar S, Katnas S, Ungan S. Determination of optimum hazelnut roasting conditions. Int. J. Food Sci. Tech. 36: 271–281 (2001)CrossRefGoogle Scholar
  10. 10.
    Hojjati M, Calín-Sánchez Á, Razavi SH, Carbonell-Barrachina ÁA. Effect of roasting on color and volatile composition of pistachios (Pistacia vera L.). Int. J. Food Sci. Tech. 48: 437–443 (2013)CrossRefGoogle Scholar
  11. 11.
    Kashani GG, Valadon LG. Effect of salting and roasting on the carbohydrates and proteins of Iranian pistachio kernels. Int. J. Food Sci. Tech. 19: 247–253 (1984)CrossRefGoogle Scholar
  12. 12.
    Nikzadeh V, Sedaghat N. Physical and sensory changes in pistachio nuts as affected by roasting temperature and storage. Am. Eurasian J. Agr. Environ. Sci. 4: 478–483 (2008)Google Scholar
  13. 13.
    Shakerardekani A, Karim R, Mohd Ghazali H, Chin N. Effect of roasting conditions on hardness, moisture content and color of pistachio kernels. Int. Food Res. J. 18: 704–710 (2011)Google Scholar
  14. 14.
    Özdemir M, Açkurt F, Yildiz M, Biringen G, Gürcan T, Löker M. Effect of roasting on some nutrients of hazelnuts (Corylus avellena L.). Food Chem. 73: 185–190 (2001)CrossRefGoogle Scholar
  15. 15.
    Yazdanpanah H, Mohammadi T, Abouhossain G, Cheraghali AM. Effect of roasting on degradation of aflatoxins in contaminated pistachio nuts. Food Chem. Toxicol. 43: 1135–1139 (2005)CrossRefGoogle Scholar
  16. 16.
    Kashani G, Valadon L. Effect of salting and roasting on the lipids of Iranian pistachio kernels. Int. J. Food Sci. Tech. 18: 461–467 (1983)CrossRefGoogle Scholar
  17. 17.
    Severini C, Gomes T, de Pilli T, Romani S, Massini R. Autoxidation of packed almonds as affected by Maillard reaction volatile compounds derived from roasting. J. Agr. Food Chem. 48: 4635–4640 (2000)CrossRefGoogle Scholar
  18. 18.
    Megahed M. Microwave roasting of peanuts: Effects on oil characteristics and composition. Nahrung 45: 255–257 (2001)CrossRefGoogle Scholar
  19. 19.
    Kita A, Figiel A. Effect of roasting on properties of walnuts. Pol. J. Food Nutr. Sci. 57: 89–94 (2007)Google Scholar
  20. 20.
    Zook D, Macku C, Deming D. Effect of microwave heating on roasted nut flavor. Dev. Food Sci. 37: 1493–1518 (1995)CrossRefGoogle Scholar
  21. 21.
    Agila A, Barringer S. Effect of roasting conditions on color and volatile profile including HMflevel in sweet almonds (Prunus dulcis). J. Food Sci. 77: C461–C468 (2012)CrossRefGoogle Scholar
  22. 22.
    Ciarmiello LF, Piccirillo P, Gerardi C, Piro F, de Luca A, D’ Imperio F, Rosito V, Poltronieri P, Santino A. Microwave irradiation for dry-roasting of hazelnuts and evaluation of microwave treatment on hazelnuts peeling and fatty acid oxidation. J. Food Res. 2: 22–35 (2013)CrossRefGoogle Scholar
  23. 23.
    Alonso A, Vázquez-Araújo L, García-Martínez S, Ruiz J, Carbonell-Barrachina ÁA. Volatile compounds of traditional and virus-resistant breeding lines of Muchamiel tomatoes. Eur. Food Res. Technol. 230: 315–323 (2009)CrossRefGoogle Scholar
  24. 24.
    AENOR. Sensory Analysis. UNE Standards [In Spanish]. AENOR, Madrid, Spain (1997)Google Scholar
  25. 25.
    Meilgaard M, Civille G, Carr B. Descriptive analysis techniques. pp. 173–188. In: Sensory Evaluation Techniques. 4th ed. CRC Press, Inc., Boca Raton, FL, USA (2007)Google Scholar
  26. 26.
    Majdi S, Barzegar M, Jabbari A, Agha Alikhani M. Supercritical fluid extraction of tobacco seed oil and its comparison with solvent extraction methods. J. Agric. Sci. Technol. 14: 1053–1065 (2012)Google Scholar
  27. 27.
    Wojdylo A, Oszmiañski J, Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 105: 940–949 (2007)CrossRefGoogle Scholar
  28. 28.
    Carbonell-Barrachina ÁA, Memmi H, Noguera-Artiaga L, Gijón-López MdC, Ciapa R, Pérez-López D. Quality attributes of pistachio nuts as affected by rootstock and deficit irrigation. J. Sci. Food Agr. 95: 2866–2873 (2015)CrossRefGoogle Scholar
  29. 29.
    Simopoulos AP. Essential fatty acids in health and chronic disease. Am. J. Clin. Nutr. 70: 560–569 (1999)Google Scholar
  30. 30.
    Chandrasekara N, Shahidi F. Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. J. Agr. Food Chem. 59: 5006–5014 (2011)CrossRefGoogle Scholar
  31. 31.
    Garrido I, Monagas M, Gómez-Cordovés C, Bartolomé B. Polyphenols and antioxidant properties of almond skins: Influence of industrial processing. J. Food Sci. 73: C106–C115 (2008)CrossRefGoogle Scholar
  32. 32.
    Calín-Sánchez Á, Figiel A, Hernández F, Melgarejo P, Lech K, Carbonell-Barrachina ÁA. Chemical composition, antioxidant capacity, and sensory quality of pomegranate (Punica granatum L.) arils and rind as affected by drying method. Food Bioprocess Tech. 6: 1644–1654 (2013)CrossRefGoogle Scholar
  33. 33.
    Calín-Sánchez Á, Figiel A, Wojdylo A, Szarycz M, Carbonell-Barrachina ÁA. Drying of garlic slices using convective pre-drying and vacuum-microwave finishing drying: Kinetics, energy consumption, and quality studies. Food Bioprocess Tech. 7: 398–408 (2014)CrossRefGoogle Scholar
  34. 34.
    Haard NF, Chism GW. Characteristics of edible plant tissues. pp. 943–1011. In: Food Chemistry. Fennema OR (ed). Marcel Dekker, Inc., New York, NY, USA (1996)Google Scholar
  35. 35.
    Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. Review of nonenzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Tech. 11: 340–346 (2000)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mohammad Hojjati
    • 1
    Email author
  • Luis Noguera-Artiaga
    • 2
  • Aneta Wojdyło
    • 3
  • Ángel Antonio Carbonell-Barrachina
    • 2
  1. 1.Department of Food Science and TechnologyRamin Agriculture and Natural Resources University of KhouzestanAhvazIran
  2. 2.Group Food Quality and Safety, Agro-Food Technology DepartmentUniversidad Miguel Hernández de ElcheOrihuela, AlicanteSpain
  3. 3.Department of Fruit and Vegetable ProcessingWroclaw University of Environmental and Life ScienceWroclawPoland

Personalised recommendations