Advertisement

Food Science and Biotechnology

, Volume 24, Issue 5, pp 1897–1900 | Cite as

α-glucosidase inhibitory activities of myricetin in animal models of diabetes mellitus

  • Soo-Jeong Kang
  • Jung-Han Yoon Park
  • Ha-Neul Choi
  • Jung-In KimEmail author
Research Note

Abstract

The α-glucosidase inhibitory activity of myricetin in vivo was investigated. Streptozotocininduced diabetic rats were administered a starch solution (1 g/kg) with and without myricetin (100 mg/kg) or acarbose (40 mg/kg) after an overnight fast. Myricetin and acarbose alleviated postprandial hyperglycemia conditions, compared with untreated rats. Consumption of 0.08% myricetin or 0.03% acarbose in the diet for 7 weeks significantly (p<0.05) reduced the serum fasting glucose, blood glycated hemoglobin, and maltase activities of the small intestine in db/db mice, compared with controls. Myricetin can be beneficial for control of hyperglycemia in diabetes mellitus partly via inhibition of the a-glucosidase activity.

Keywords

myricetin α-glucosidase glucose glycated hemoglobin db/db mouse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrahamson MJ. Optimal glycemic control in type 2 diabetes mellitus: Fasting and postprandial glucose in context. Arch. Intern. Med. 164: 486–491 (2004)CrossRefGoogle Scholar
  2. 2.
    Bressler R, Johnson D. New pharmacological approaches to therapy of NIDDM. Diabetes Care 15: 792–805 (1992)CrossRefGoogle Scholar
  3. 3.
    Raptis SA, Dimitriadis GD. Oral hypoglycemic agents: Insulin secretagogues, a- glucosidase inhibitors and insulin sensitizers. Exp. Clin. Endocr. Diab. 109: S265-S287 (2001)Google Scholar
  4. 4.
    Mai TT, Chuyen NV. Anti-hyperglycemic activity of an aqueous extract from flower buds of Cleistocalyx operculatus (Roxb.) Merr and Perry. Biosci. Biotech. Bioch. 71: 69–76 (2007)CrossRefGoogle Scholar
  5. 5.
    Joo HJ, Kang MJ, Seo TJ, Kim HA, Yoo SJ, Lee SK, Lim HJ, Byun BH, Kim JI. The hypoglycemic effect of Saururus chinensis Baill in animal models of diabetes mellitus. Food Sci. Biotechnol. 15: 413–417 (2006)Google Scholar
  6. 6.
    Deguchi Y, Osada K, Uchida K, Kimura H, Yoshikawa M, Kudo T, Yasui H, Waranuki M. Effects of extract of guava leaves on the development of diabetes in the db/db mouse and on the postprandial blood glucose of human subjects. Nippon Nogeik. Kaishi 72: 923–932 (1998)CrossRefGoogle Scholar
  7. 7.
    Aguilar-Santamaría L, Ramírez G, Nicasio P, Alegría-Reyes C, Herrera-Arellano A. Antidiabetic activities of Tecoma stans (L.) Juss. ex Kunth. J. Ethnopharmacol. 124: 284–288 (2009)CrossRefGoogle Scholar
  8. 8.
    Kumar S, Narwal S, Kumar V, Prakash O. a-Glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev. 5: 19–29 (2011)CrossRefGoogle Scholar
  9. 9.
    Ong KC, Khoo HE. Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci. 67: 1695–1705 (2000)CrossRefGoogle Scholar
  10. 10.
    Choi HN, Kang MJ, Lee SJ, Kim JI. Ameliorative effect of myricetin on insulin resistance in mice fed a high-fat, high-sucrose diet. Nutr. Res. Pract. 8: 544–549 (2014)CrossRefGoogle Scholar
  11. 11.
    Liu IM, Tzeng TF, Liou SS, Lan TW. Improvement of insulin sensitivity in obese Zucker rats by myricetin extracted from Abelmoschus moschatus. Planta Med. 73: 1054–1060 (2007)CrossRefGoogle Scholar
  12. 12.
    Liu IM, Tzeng TF, Liou SS, Lan TW. Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a high-fructose diet in rats. Life Sci. 81: 1479–1488 (2007)CrossRefGoogle Scholar
  13. 13.
    Tadera K, Minami Y, Takamatsu K, Matsuoka T. Inhibition of a-glucosidase and a-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 52: 149–153 (2006)CrossRefGoogle Scholar
  14. 14.
    Park H, Hwang KY, Kim YH, Oh KH, Lee JY, Kim K. Discovery and biological evaluation of novel α-glucosidase inhibitors with in vivo antidiabetic effect. Bioorg. Med. Chem. Lett. 18: 3711–3715 (2008)CrossRefGoogle Scholar
  15. 15.
    Choi HN, Kang MJ, Jeong SM, Seo MJ, Kang BW, Jeong YK, Kim JI. Effect of dongchunghacho (Cordyceps militaris) on hyperglycemia and dyslipidemia in type 2 diabetic db/db mice. Food Sci. Biotechnol. 21: 1157–1162 (2012)CrossRefGoogle Scholar
  16. 16.
    Dahlqvist A. Assay of intestinal disaccharidases. Scand. J. Clin. Lab. Inv. 44: 169–172 (1984)CrossRefGoogle Scholar
  17. 17.
    Raabo E, Terkildsen TC. On the enzymatic determination of blood glucose. Scand. J. Clin. Lab. Inv. 12: 402–407(1960)CrossRefGoogle Scholar
  18. 18.
    Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951)Google Scholar
  19. 19.
    Wajchenberg BL. Postprandial glycemia and cardiovascular disease in diabetes mellitus. Arq. Bras. Endocrinol. 51: 212–221 (2007)CrossRefGoogle Scholar
  20. 20.
    Node K, Inoue T. Postprandial hyperglycemia as an etiological factor in vascular failure. Cardiovasc. Diabetol. 8: 23 (2009)CrossRefGoogle Scholar
  21. 21.
    Yan LJ. Pathogenesis of chronic hyperglycemia: From reductive stress to oxidative stress. J. Diabetes Res. 2014: Article ID 137919 (2014)Google Scholar
  22. 22.
    Hirst J, King MS, Pryde KR. The production of reactive oxygen species by complex I. Biochem. Soc. T. 36: 976–980 (2008)CrossRefGoogle Scholar
  23. 23.
    Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships. Free Radical Bio. Med. 22: 749–760 (1997)CrossRefGoogle Scholar
  24. 24.
    Carrascosa JM, Molero JC, Fermín Y, Martínez C, Andrés A, Satrústegui J. Effects of chronic treatment with acarbose on glucose and lipid metabolism in obese diabetic Wistar rats. Diabetes Obes. Metab. 3: 240–248 (2001)CrossRefGoogle Scholar
  25. 25.
    Derosa G, Maffioli P. a-Glucosidase inhibitors and their use in clinical practice. Arch. Med. Sci. 8: 899–906 (2012)CrossRefGoogle Scholar
  26. 26.
    Hollander P, Pi-Sunyer X, Coniff RF. Acarbose in the treatment of type I diabetes. Diabetes Care 20: 248–253 (1997)CrossRefGoogle Scholar
  27. 27.
    Liu L, Yu YL, Yang JS, Li Y, Liu YW, Liang Y, Liu XD, Xie L, Wang GJ. Berberine suppresses intestinal disaccharidases with beneficial metabolic effects in diabetic states, evidences from in vivo and in vitro study. N-S Arch. Pharmacol. 381: 371–381 (2010)CrossRefGoogle Scholar
  28. 28.
    Kim JG, Jo SH, Ha KS, Kim SC, Kim YC. Apostolidis E, Kwon YI. Effect of longterm supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action. BMC Complem. Altern. M. 14: 272 (2014)Google Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Soo-Jeong Kang
    • 1
  • Jung-Han Yoon Park
    • 2
  • Ha-Neul Choi
    • 1
  • Jung-In Kim
    • 1
    Email author
  1. 1.Department of Smart Food and DrugsSchool of Food and Life Science, Inje UniversityGimhae, GyeongnamKorea
  2. 2.Department of Food Science and NutritionHallym UniversityChuncheon, GangwonKorea

Personalised recommendations