Skip to main content
Log in

Enzymatic production of soluble dietary fiber from the cellulose fraction of Chinese cabbage waste and potential use as a functional food source

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Use of Chinese cabbage waste as a raw material for production of soluble dietary fiber was investigated. Chinese cabbage was treated with a mixture of 1 M NaOH and hydrolyzed using Celluclast 1.5 L. A supernatant was then treated using 85% ethanol, and separated into alcohol-soluble dietary fiber (ASF) and alcohol-insoluble dietary fiber (AIF) fractions. AIF effectively hindered diffusion of glucose and bile acid from dialysis membranes, and exerted a significantly (p<0.05) greater effect on retardation of bile acid activity than both carboxymethylcellulose and pectin. Water-soluble dietary fiber obtained from the cellulose fraction of Chinese cabbage using enzymatic hydrolysis is a potential source of dietary fiber with prebiotic, hypoglycemic, and hypolipidemic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trowell H. Ischemic heart disease and dietary fiber. Am. J. Clin. Nutr. 25: 926–932 (1972)

    CAS  Google Scholar 

  2. Dongowski G. Interactions between dietary fibre-rich preparations and glycoconjugated bile acids in vitro. Food Chem. 104: 390–397 (2007)

    Article  CAS  Google Scholar 

  3. Kim YI. Impact of dietary fiber on colon cancer occurrence. Gastroenterology 116: 1235–1257 (2000)

    Article  Google Scholar 

  4. Zacherl C, Eisner P, Engel KH. In vitro model to correlate viscosity and bile acid-binding capacity of digested water-soluble and insoluble dietary fibers. Food Chem. 126: 423–428 (2011)

    Article  CAS  Google Scholar 

  5. Cui SW, Nie S, Roberts KT. Functional properties of dietary fibre. Biotechnology 4: 517–525 (2011)

    Google Scholar 

  6. Davison MH, McDonald A. Fiber: Forms and functions. Nutr. Res. 18: 617–624 (1998)

    Article  Google Scholar 

  7. Chantaro P, Devahastin S, Chiewchan N. Production of antioxidant high dietary powder from carrot peels. LWT-Food Sci. Technol. 41: 1987–1994 (2008)

    Article  CAS  Google Scholar 

  8. Yoon KY, Cha M, Shin SR, Kim KS. Enzymatic production of a soluble-fibre hydrolyzate from carrot pomace and its sugar composition. Food Chem. 92: 161–157 (2005)

    Article  Google Scholar 

  9. Yoon KY, Woodams EE, Hang YD. Enzymatic production of pentose from the hemicellulose fraction of corn residues. LWT-Food Sci. Technol. 39: 387–391 (2006)

    Google Scholar 

  10. Nilnakara S, Chiewchan N, Devahastin S. Production of antioxidant dietary fibre powder from cabbage outer leaves. Food Bioprod. Process. 87: 301–307 (2009)

    Article  CAS  Google Scholar 

  11. Figuerola F, Hurtado ML, Estevez AM, Choffelle I, Asenjo F. Fiber concentrates from apple pomace and citrus peels as potential fiber source for food enrichment. Food Chem. 91: 395–401 (2005)

    Article  CAS  Google Scholar 

  12. Jiménez-Escrig A, Sánchez-Muniz FJ. Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties, and effects on cholesterol metabolism. Nutr. Res. 20: 585–598 (2000)

    Article  Google Scholar 

  13. Yangilar F. The application of dietary fibre in food industry: Structural features, effects on health and definition, obtaining and analysis of dietary fibre: A review. J. Food Nutr. Res. 1: 13–23 (2013)

    Google Scholar 

  14. Dello Staffolo M, Bertola N, Martino M, Bevilaqcua A. Influence of dietary fiber addition on sensory and rheological properties of yogurt. Int. Dairy J. 14: 263–268 (2004)

    Article  Google Scholar 

  15. Thebaudin JY, Lefebvre AC, Harrington M, Bourgeois CM. Dietary fibres: Nutritional and technological interest. Trends Food Sci. Tech. 8: 41–48 (1997)

    Article  CAS  Google Scholar 

  16. Bollinger H. Functional drinks with dietary fiber. Fruit Process. 12: 252–254 (2001)

    Google Scholar 

  17. Rodríguez RAJ, Jiménez A, Fernández-Bolaños J, Guillén R, Heredia A. Dietary fibre from vegetable products as a source of functional ingredients. Trends Food Sci. Tech. 17: 3–15 (2006)

    Article  Google Scholar 

  18. Choi MH, Park YH. Production of yeast biomass using waste Chinese cabbage. Biomass Bioenerg. 25: 221–226 (2003)

    Article  Google Scholar 

  19. Wennberg MS, Engqvist GM, Nyman EMGL. Effects of boiling on dietary fibre components in fresh and stored white cabbage (Brassica oleracea var. capitata). J. Food Sci. 68: 1615–1621 (2004)

    Article  Google Scholar 

  20. Jongaroontaprangsee S, Tritrong W, Chokanaporn W, Methacanon P, Devahastin S, Chiewchan N. Effects of drying temperature and particle size on hydration properties of dietary fiber powder from lime and cabbage by products. Int. J. Food Prop. 10: 887–897 (2007)

    Article  CAS  Google Scholar 

  21. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 32: 426–428 (1959)

    Article  Google Scholar 

  22. Dubois M, Gilles KA, Hamilton JK, Reber PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356 (1956)

    Article  CAS  Google Scholar 

  23. Lorian V. Antibiotics in laboratory medicine. 15th ed. Williams and Wilkins, Philadelphia, PA, USA. pp. 61–143 (2005)

    Google Scholar 

  24. LeChevallier MW, Seidler RJ, Evans TM. Enumeration and characterization of standard plate count bacteria in chlorinated and raw water supplies. Appl. Environ. Microb. 40: 922–930 (1980)

    CAS  Google Scholar 

  25. Adiotomore J, Eastwood MA, Edwards CA, BrydonWG. Dietary fiber: In vitro method that anticipate nutrition and metabolic activity in humans. Am. J. Clin. Nutr. 52: 128–134 (1990)

    Google Scholar 

  26. Boyd GS, Eastwood MA, MacLean N. Bile acids in the rat: Studies in experimental occlusion of the bile duct. J. Lipid Res. 7: 83–94 (1996)

    Google Scholar 

  27. Modler HW. Bifidogenic factor-source, metabolism, and application. Int. Diary J. 4: 383–407 (1994)

    Article  Google Scholar 

  28. Hillman LC, Peters SG, Fisher CA, Pomare EW. The effects of the fiber components pectin, cellulose, and lignin on serum cholesterol levels. Am. J. Clin. Nutr. 42: 207–213 (1985)

    CAS  Google Scholar 

  29. Farness PL, Schneeman BO. Effects of dietary cellulose, pectin, and oat bran on the small intestine in the rat. J. Nutr. 112: 1315–1319 (1982)

    CAS  Google Scholar 

  30. Peerajit P, Chiewchan N, Devahastin S. Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues. Food Chem. 132: 1891–1898 (2012)

    Article  CAS  Google Scholar 

  31. Chau CF, Huang YL, Lee MH. In vitro hypoglycemic effects of different insoluble fiber-rich fractions prepared from the peel of Citrus Sinensis L. cv. Liucheng. J. Agr. Food Chem. 51: 6623–6626 (2003)

    Article  CAS  Google Scholar 

  32. López G, Ros G, Rincón F, Periago MJ, Martínez MC, Ortuño J. Relationship between physical and hydration properties of soluble and insoluble fiber of artichoke. J. Agr. Food Chem. 44: 2773–2778 (1996)

    Article  Google Scholar 

  33. Jenkins DJA, Jenkins MJA, Wolver TMS, Taylor RH, Ghafari H. Slow release carbohydrate: Mechanism of action of viscous fiber. J. Clin. Nutr. Gastroenterol. 1: 237–241 (1986)

    CAS  Google Scholar 

  34. Krichevsky D. In vitro binding properties of dietary fiber. Eur. J. Clin. Nutr. 49: 113–115 (1995)

    Google Scholar 

  35. Wood PJ. Evaluation of oat bran as a soluble fibre source. Chracterization of oat β-glucan and its effects on glycemic response. Carbohyd. Polym. 25: 331–336 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Young Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.Y., Yoon, K.Y. Enzymatic production of soluble dietary fiber from the cellulose fraction of Chinese cabbage waste and potential use as a functional food source. Food Sci Biotechnol 24, 529–535 (2015). https://doi.org/10.1007/s10068-015-0069-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0069-0

Keywords

Navigation