Advertisement

Food Science and Biotechnology

, Volume 24, Issue 1, pp 347–351 | Cite as

Sulforaphane inhibited tumor necrosis factor-α induced migration and invasion in estrogen receptor negative human breast cancer cells

  • Cheng Bao
  • Jiwon Ko
  • Hyun-Chang Park
  • Min Chae Kim
  • Jongkee Kim
  • Joong-Hyuck Auh
  • Hong Jin Lee
Research Note

Abstract

Sulforaphane significantly (p<0.05) inhibited tumor necrosis factor (TNF)-α induced cellular migration and invasion in MCF10DCIS.com human breast cancer cells, compared with controls. mRNA and protein expressions of MMPs, including MMP-2, MMP-9, and MMP-13, and the enzymatic activities of MMP-2 and MMP-9 were suppressed by sulforaphane treatments at 1, 5, and 10 μM concentration in MCF10DCIS.com cells. Sulforaphane should be considered as a potent agent for retardation of mammary tumorigenesis.

Keywords

breast cancer invasion matrix metalloproteinase migration sulforaphane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdull Razis AF, Noor NM. Cruciferous vegetables: Dietary phytochemicals for cancer prevention. Asian Pac. J. Cancer Prev. 14: 1565–1570 (2013)CrossRefGoogle Scholar
  2. 2.
    Houghton CA, Fassett RG, Coombes JS. Sulforaphane: Translational research from laboratory bench to clinic. Nutr. Rev. 71: 709–726 (2013)CrossRefGoogle Scholar
  3. 3.
    Chiao JW, Chung FL, Kancherla R, Ahmed T, Mittelman A, Conaway CC. Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int. J. Oncol. 20: 631–636 (2002)Google Scholar
  4. 4.
    Srivastava SK, Xiao D, Lew KL, Hershberger P, Kokkinakis DM, Johnson CS, Trump DL, Singh SV. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo. Carcinogenesis 24: 1665–1670 (2003)CrossRefGoogle Scholar
  5. 5.
    Parnaud G, Li P, Cassar G, Rouimi P, Tulliez J, Combaret L, Gamet-Payrastre L. Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr. Cancer 48: 198–206 (2004)CrossRefGoogle Scholar
  6. 6.
    Lee YR, Noh EM, Han JH, Kim JM, Hwang BM, Kim BS, Lee SH, Jung SH, Youn HJ, Chung EY, Kim JS. Sulforaphane controls TPA-induced MMP-9 expression through the NF-kappaB signaling pathway, but not AP-1, in MCF-7 breast cancer cells. BMB Rep. 46: 201–206 (2013)CrossRefGoogle Scholar
  7. 7.
    Hunakova L, Sedlakova O, Cholujova D, Gronesova P, Duraj J, Sedlak J. Modulation of markers associated with aggressive phenotype in MDA-MB-231 breast carcinoma cells by sulforaphane. Neoplasma 56: 548–556 (2009)CrossRefGoogle Scholar
  8. 8.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J. Clin. 61: 69–90 (2011)CrossRefGoogle Scholar
  9. 9.
    Friedel G, Pastorino U, Ginsberg RJ, Goldstraw P, Johnston M, Pass H, Putnam JB, Toomes H, International Registry of Lung Metastases LE. Results of lung metastasectomy from breast cancer: Prognostic criteria on the basis of 467 cases of the International Registry of Lung Metastases. Eur. J. Cardio-thorac. 22: 335–344 (2002)CrossRefGoogle Scholar
  10. 10.
    Crawford HC, Matrisian LM. Mechanisms controlling the transcription of matrix metalloproteinase genes in normal and neoplastic cells. Enzyme Protein 49: 20–37 (1996)Google Scholar
  11. 11.
    Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 89: 1260–1270 (1997)CrossRefGoogle Scholar
  12. 12.
    Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth F. R. 13: 135–141 (2002)CrossRefGoogle Scholar
  13. 13.
    Bao C, Namgung H, Lee J, Park HC, Ko J, Moon H, Ko HW, Lee HJ. Daidzein Suppresses Tumor Necrosis Factor-alpha Induced Migration and Invasion by Inhibiting Hedgehog/Gli1 Signaling in Human Breast Cancer Cells. J. Agr. Food Chem. 62: 3759–3767 (2014)CrossRefGoogle Scholar
  14. 14.
    Miller FR, Santner SJ, Tait L, Dawson PJ. MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J. Natl. Cancer Inst. 92: 1185–1186 (2000)CrossRefGoogle Scholar
  15. 15.
    Wahler J, So JY, Kim YC, Liu F, Maehr H, Uskokovic M, Suh N. Inhibition of the Transition of Ductal Carcinoma In Situ to Invasive Ductal Carcinoma by a Gemini Vitamin D Analog. Cancer Prev. Res. 7: 617–626 (2014)CrossRefGoogle Scholar
  16. 16.
    Ni X, Xia T, Zhao Y, Zhou W, Wu N, Liu X, Ding Q, Zha X, Sha J, Wang S. Downregulation of miR-106b induced breast cancer cell invasion and motility in association with overexpression of matrix metalloproteinase 2. Cancer Sci. 105: 18–25 (2014)CrossRefGoogle Scholar
  17. 17.
    Wu ZS, Wu Q, Yang JH, Wang HQ, Ding XD, Yang F, Xu XC. Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. Int. J. Cancer 122: 2050–2056 (2008)CrossRefGoogle Scholar
  18. 18.
    Zhang B, Cao X, Liu Y, Cao W, Zhang F, Zhang S, Li H, Ning L, Fu L, Niu Y, Niu R, Sun B, Hao X. Tumor-derived matrix metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer. BMC Cancer 8: 83 (2008)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Cheng Bao
    • 1
  • Jiwon Ko
    • 1
  • Hyun-Chang Park
    • 1
  • Min Chae Kim
    • 1
  • Jongkee Kim
    • 2
  • Joong-Hyuck Auh
    • 1
  • Hong Jin Lee
    • 1
  1. 1.Department of Food Science and TechnologyChung-Ang UniversityAnseong, GyeonggiKorea
  2. 2.Department of Integrative Plant ScienceChung-Ang UniversityAnseong, GyeonggiKorea

Personalised recommendations