Advertisement

Food Science and Biotechnology

, Volume 24, Issue 1, pp 15–21 | Cite as

Physicochemical properties and antioxidant activities of melanin and fractions from Auricularia auricula fruiting bodies

  • Yu Zou
  • Wenzhong Hu
  • Kun Ma
  • Mixia Tian
Research Article

Abstract

Fractions I and II from Auricularia auricula fruiting body (AAFB) melanin were separated using Sephadex G-100 column chromatography and their physicochemical properties and antioxidant activities were investigated. Molecular mass values of the fractions were 384 and 47 kDa, respectively. Fraction I exhibited lower L*, a*, and b* values than AAFB melanin and fraction II. AAFB melanin and fractions possessed the same solubility and spectroscopic properties, which were similar to the properties of other melanin. Elemental composition analysis revealed that the main component of AAFB melanin and fractions was pheomelanin. AAFB melanin and fractions, particularly fraction II, exhibited strong antioxidant activities based on Fe2+-chelating, DPPH radical scavenging, and superoxide radical scavenging activities.

Keywords

Auricularia auricula melanin fraction property antioxidant activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313: 17–29 (1996)Google Scholar
  2. 2.
    Biswas M, Das SS, Dey S. Establishment of a stable Amaranthus tricolor callus line for production of food colorant. Food Sci. Biotechnol. 22(Suppl.): 1–8 (2013)CrossRefGoogle Scholar
  3. 3.
    Dharmaraj S, Ashokkumar B, Dhevendaran K. Food-grade pigments from Streptomyces sp. isolated from the marine sponge Callyspongia diffusa. Food Res. Int. 42: 487–492 (2009)CrossRefGoogle Scholar
  4. 4.
    Satooka H, Kubo I. Effects of thymol on Mushroom tyrosinase-catalyzed melanin formation. J. Agr. Food Chem. 59: 8908–8914 (2011)CrossRefGoogle Scholar
  5. 5.
    Wheeler MH, Bruton BD, Puckhaber LS, Zhang J, Stipanovic RD. Identification of 1,8-dihydroxynaphthalene melanin in Monosporascus cannonballus and the analysis of hexaketide and pentaketide compounds produced by wild-type and pigmented isolates of the fungus. J. Agr. Food Chem. 52: 4113–4120 (2004)CrossRefGoogle Scholar
  6. 6.
    Dalfard AB, Khajeh K, Soudi MR, Naderi-Manesh H, Ranjbar B, Sajedi RH. Isolation and biochemical characterization of laccase and tyrosinase activities in a novel melanogenic soil bacterium. Enzyme Microb. Tech. 39: 1409–1416 (2006)CrossRefGoogle Scholar
  7. 7.
    Hung YC, Sava VM, Makan SY, Chen THJ, Hong MY, Huang GS. Antioxidant activity of melanins derived from tea: Comparison between different oxidative states. Food Chem. 78: 233–240 (2002)CrossRefGoogle Scholar
  8. 8.
    Rózanowska M, Sarna T, Land EJ, Truscott TG. Free radical scavenging properties of melanin interaction of eu- and pheomelanin models with reducing and oxidising radicals. Free Radical Bio. Med. 26: 518–525 (1999)CrossRefGoogle Scholar
  9. 9.
    Tu Y, Sun Y, Tian Y, Xie M, Chen J. Physicochemical characterisation and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl (Gallus gallus domesticus Brisson). Food Chem. 114: 1345–1350 (2009)CrossRefGoogle Scholar
  10. 10.
    Wu Y, Shan L, Yang S, Ma A. Identification and antioxidant activity of melanin isolated from Hypoxylon archeri, a companion fungus of Tremella fuciformis. J. Basic Microb. 48: 217–221 (2008)CrossRefGoogle Scholar
  11. 11.
    Manning JT, Bundred PE, Henzi P. Melanin and HIV in sub-Saharan Africa. J. Theor. Biol. 223: 131–133 (2003)CrossRefGoogle Scholar
  12. 12.
    Montefiori DC, Zhou JY. Selective antiviral activity of synthetic soluble l-tyrosine and l-dopa melanins against human immuno-deficiency virus in vitro. Antivir. Res. 15: 11–25 (1991)CrossRefGoogle Scholar
  13. 13.
    Sava VM, Galkin BN, Hong MY, Yang PC, Huang GS. A novel melanin-like pigment derived from black tea leaves with immuno-stimulating activity. Food Res. Int. 34: 337–343 (2001)CrossRefGoogle Scholar
  14. 14.
    Zhang L, Yang L, Ding Q, Chen X. Studies on molecular weights of polysaccharides of Auricularia auricula-judae. Carbohyd. Res. 270: 1–10 (1995)CrossRefGoogle Scholar
  15. 15.
    Acharya K, Samui K, Rai M, Dutta B, Achary R. Antioxidant and nitric oxide synthase activation properties of Auricularia auricula. Indian J. Exp. Biol. 42: 538–540 (2004)Google Scholar
  16. 16.
    Luo Y, Chen G, Li B, Ji B, Guo Y, Tian F. Evaluation of antioxidative and hypolipidemic properties of a novel functional diet formulation of Auricularia auricula and Hawthorn. Innov. Food Sci. Emerg. 10: 215–221 (2009)CrossRefGoogle Scholar
  17. 17.
    Misaki A, Kakuta M, Sasaki T, Tanaka M, Miyaji H. Studies on interrelation of structure and antitumor effects of polysaccharides: Antitumor action of periodate-modified, branched (1→3)-beta-d-glucan of Auricularia auricula-juade, and other polysaccharides containing (1→3)-glycosidic linkages. Carbohyd. Res. 92: 115–129 (1981)CrossRefGoogle Scholar
  18. 18.
    Zou Y, Xie C, Fang G, Gu Z, Han Y. Optimization of ultrasound-assisted extraction of melanin from Auricularia auricula fruit bodies. Innov. Food Sci. Emerg. 11: 611–615 (2010)CrossRefGoogle Scholar
  19. 19.
    Santos CNS, Stephanopoulos G. Melanin-based high-throughput screen for L-tyrosine production in Escherichia coli. Appl. Environ. Microb. 74: 1190–1197 (2008)CrossRefGoogle Scholar
  20. 20.
    Sava VM, Yang SM, Hong MY, Yang PC, Huang GS. Isolation and characterization of melanic pigments derived from tea and tea polyphenols. Food Chem. 73: 117–184 (2001)CrossRefGoogle Scholar
  21. 21.
    Wang H, Pan Y, Tang X, Huang Z. Isolation and characterization of melanin from Osmanthus fragrans’ seeds. LWT-Food Sci. Technol. 39: 496–502 (2006)CrossRefGoogle Scholar
  22. 22.
    Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315: 161–169 (1994)CrossRefGoogle Scholar
  23. 23.
    Martinez CA, Loureiro ME, Oliva MA, Maestri M. Differential responses of superoxide dismutase in freezing resistant Solanum curtilobum and freezing sensitive Solanum tuberosum subjected to oxidative and water stress. Plant Sci. 160: 505–515 (2001)CrossRefGoogle Scholar
  24. 24.
    Selvakumar P, Rajasekar S, Periasamy K, Raaman N. Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsis macrocarpa). World J. Microb. Biot. 24: 2125–2131 (2008)CrossRefGoogle Scholar
  25. 25.
    Riley PA. Melanin. Int. J. Biochem. Cell B. 29: 1235–1239 (1997)CrossRefGoogle Scholar
  26. 26.
    Aghajanyan AE, Hambardzumyan AA, Hovsepyan AS, Asaturian RA, Vardanyan AA, Saghiyan AA. Isolation, purification, and physicochemical characterization of water-soluble Bacillus thuringiensis melanin. Pigm. Cell Res. 18: 130–135 (2005)CrossRefGoogle Scholar
  27. 27.
    Suryanarayanan TS, Ravishankar JP, Venkatesan G, Murali TS. Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Mycol. Res. 108: 974–978 (2004)CrossRefGoogle Scholar
  28. 28.
    Chen SR, Jiang B, Zheng JX, Xu GY, Li JY, Yang N. Isolation and characterization of natural melanin derived from silky fowl (Gallus gallus domesticus Brisson). Food Chem. 111: 745–749 (2008)CrossRefGoogle Scholar
  29. 29.
    Ito S, Fujita K. Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography. Anal. Biochem. 144: 527–536 (1985)CrossRefGoogle Scholar
  30. 30.
    Zhu CZ, Zhang WG, Zhou GH, Xu XL, Kang ZL, Yin Y. Isolation and identification of antioxidant peptides from Jinhua Ham. J. Agr. Food Chem. 61: 1265–1271 (2013)CrossRefGoogle Scholar
  31. 31.
    Peksel A, Arisan-Atac I, Yanardag R. Evaluation of antioxidant and antiacetylcholinesterase activities of the extracts of Pistacia atlantica desf. leaves. J. Food Biochem. 34: 451–476 (2010)Google Scholar
  32. 32.
    Dasgupta N, De B. Antioxidant activity of Piper betle L. leaf extract in vitro. Food Chem. 88: 219–224 (2004)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.College of Life ScienceDalian Nationalities UniversityLiaoning DalianChina

Personalised recommendations